论文部分内容阅读
太阳能以其不竭性和环保优势已成为当今世界最具光明前景的新能源之一。在国外光伏发电技术己得到深入研究和推广,在我国也已进入推广应用阶段,光伏并网发电是光伏发电的主要发展趋势之一。与此同时,随着我国工业化进程的加快,大量的非线性和冲击性负载随之涌现,由这些负载所产生的谐波及无功电流对公共电网的污染也日益严重,而传统的无源滤波越来越不能满足电能质量的要求,因此有源电力滤波器(APF)也成了近年来国内外研究的热点。APF和光伏并网发电技术虽然前景光明,但是两者仍各有不足,均面临推广障碍。例如:光伏并网发电装置只在白天工作,晚上要切离电网,这不仅影响设备利用率,并且频繁投切时会对电网稳定造成影响;两者应用成本较高;经济效益低;政策支持不完善等等。针对两者的不足和发展障碍,本文运用APF与光伏并网发电的统一控制思想,并充分利用两者的拓扑结构进一步对系统功能进行了拓展,以促进两者的共同发展。最终完整地提出了APF与光伏发电的统一控制系统,新的系统结构和控制策略不但能同时实现光伏并网发电、无功及谐波补偿,而且在电网因故障停电时可以对重要负载实施电力中断补偿(UPS功能),以保证重要负载不间断地工作。文中对APF和光伏并网的统一控制原理、新系统结构的演变、系统工作原理和控制策略等进行了详细的分析研究;对文中提出的系统所涉及的具体技术进行了理论和实验研究,这些技术包括:并网和UPS两种工作模式下变流器的控制技术及相互转换技术;无功和谐波电流检测技术;无功与谐波补偿指令和光伏并网有功指令合成算法;光伏阵列最大功率跟踪控制技术;电力中断检测技术;蓄电池的充放电管理等。最后,利用MATLAB/Simulink对所提出的APF和光伏发电统一控制系统进行了仿真验证,并且设计了一台基于TMS320LF2407DSP的实验样机,对样机功能进行了实验研究。仿真和样机实验结果证明了所提出的系统结构及控制策略的可行性和正确性。