论文部分内容阅读
随着仿生机器人技术的不断发展,仿生机器人的的应用领域变得更加广泛,由于不同的功能需求,各式各样的仿生机器人呈现在大众面前。陆地移动机器人根据运动方式的差异,可以分为轮式移动机器人,履带式移动机器人以及足式移动机器人。相较于轮式移动机器人和履带式移动机器人,腿足机构具备很高的灵活性,因此足式机器人在自然环境下作业有着巨大的优势。
目前,仿照四足哺乳动物的运动方式,大量的研究团队开展了对四足机器人的研究。其中,电机驱动四足机器人凭借其控制简单及维护方便等优势成为当今研究的热点。而要实现其不同场景下的应用,研发高性能的控制系统及实现多种步态的控制算法至关重要。为此,本论文基于开源机器人仿真软件Webots以及山东大学机器人中心自主开发的电机驱动四足机器人物理平台,对四足机器人的控制系统,多种步态控制方法进行研究分析并进行了仿真实验验证。主要内容如下:(1)单腿建模与单腿测试平台的实验验证。构建四足机器人单腿关节坐标系,计算单腿的正逆运动学及动力学,基于单腿虚拟模型实现了单腿的自由下落与连续弹跳,并通过多次实验及参数调整在单腿测试平台上验证了其可行性。
(2)高频率,高实时性,高稳定性四足机器人控制系统设计与实现。本文通过软硬件相结合的方式,并遵循稳定实时且高容错性的原则,实现了控制频率达到1KHz的控制系统。硬件上选择Kontron ECX-BDW-U工控机,搭载QNX操作系统,ELMO Gold系列高性能驱动器,并通过EtherCAT总线技术实现了数据通信。软件上通过绑定内核的方式对CPU进行任务分配,使用多线程技术,包含数据记录线程,CoE邮箱线程,四足机器人控制算法线程,TCP/IP线程,实现了控制系统的高稳定和高频率特性。另外,设定驱动程序为非阻塞模式,保证了系统的实时性和稳定性。
(3)基于模型预测控制计算最优足底力实现多步态控制及步态切换方法。设计步态规划器实现四足机器人的多种步态,如步行、对角小跑、四足跳跃、双足跳跃等步态。根据简化的四足机器人模型,构建机器人状态空间方程,根据期望的步态周期判断机器人当前所处相位,若为摆动相,则进行单腿摆动控制,若为支撑相,则将模型预测控制转化为二次规划问题计算最优足底力,最终实现四足机器人的多步态控制。最后,在开源动力学仿真软件Webots中,对上述方法进行了仿真实验验证。
目前,仿照四足哺乳动物的运动方式,大量的研究团队开展了对四足机器人的研究。其中,电机驱动四足机器人凭借其控制简单及维护方便等优势成为当今研究的热点。而要实现其不同场景下的应用,研发高性能的控制系统及实现多种步态的控制算法至关重要。为此,本论文基于开源机器人仿真软件Webots以及山东大学机器人中心自主开发的电机驱动四足机器人物理平台,对四足机器人的控制系统,多种步态控制方法进行研究分析并进行了仿真实验验证。主要内容如下:(1)单腿建模与单腿测试平台的实验验证。构建四足机器人单腿关节坐标系,计算单腿的正逆运动学及动力学,基于单腿虚拟模型实现了单腿的自由下落与连续弹跳,并通过多次实验及参数调整在单腿测试平台上验证了其可行性。
(2)高频率,高实时性,高稳定性四足机器人控制系统设计与实现。本文通过软硬件相结合的方式,并遵循稳定实时且高容错性的原则,实现了控制频率达到1KHz的控制系统。硬件上选择Kontron ECX-BDW-U工控机,搭载QNX操作系统,ELMO Gold系列高性能驱动器,并通过EtherCAT总线技术实现了数据通信。软件上通过绑定内核的方式对CPU进行任务分配,使用多线程技术,包含数据记录线程,CoE邮箱线程,四足机器人控制算法线程,TCP/IP线程,实现了控制系统的高稳定和高频率特性。另外,设定驱动程序为非阻塞模式,保证了系统的实时性和稳定性。
(3)基于模型预测控制计算最优足底力实现多步态控制及步态切换方法。设计步态规划器实现四足机器人的多种步态,如步行、对角小跑、四足跳跃、双足跳跃等步态。根据简化的四足机器人模型,构建机器人状态空间方程,根据期望的步态周期判断机器人当前所处相位,若为摆动相,则进行单腿摆动控制,若为支撑相,则将模型预测控制转化为二次规划问题计算最优足底力,最终实现四足机器人的多步态控制。最后,在开源动力学仿真软件Webots中,对上述方法进行了仿真实验验证。