论文部分内容阅读
通过非线性转换的短波长激光具有高光子能量的特点,在医学、工业和科学领域有着广泛的应用。本论文主要研究了全固态纳秒和皮秒激光器的倍频、三倍频非线性光学频率变换技术,通过新的材料及实验方案设计,实现了转换效率及输出方式的改进,并在此基础上,对部分研究成果进行了样机研制。论文的主要内容包括:(1)在单斜相KDP晶体微结构中实现了纳秒脉冲激光的倍频,通过实验分析了 KDP晶体微结构参数对转换效率的影响,研究了倍频光的偏振特性,得出KDP晶体微结构中实现Ⅰ类相位匹配的结论。(2)研究了一维ANDS的纳秒脉冲激光倍频,注入359.26mW基频光功率实现了 1.93mW绿光输出;(3)采用布儒斯特角切割的LBO晶体实现三倍频和分光,实现高效率腔内355nm紫外激光产生,泵浦功率29W时,输出功率达到5.6W;(4)采用折返点相位匹配双晶体级联方案,实现了高效率宽带倍频和三倍频;(5)搭建了高重频再生放大器,实现了 10.9W/10ps/100kHz的皮秒脉冲激光,并进行了倍频和三倍频实验,采用电控调节半波片位置,能够实现输出波长的灵活选择。磷酸二氢钾(KH2PO4,KDP)是一种具有优良非线性光学性能的晶体。为帮助确定KDP晶体微结构中倍频物理机制,首次报道了单斜单晶KDP晶体微结构中的纳秒脉冲倍频过程,利用长度为0.95mm、直径为25μm的KDP晶体微结构,在908mW基频光功率下,产生了 705μW的532nm光功率,其转换效率为8.55 × 10-4W-1。实验结果表明,KDP晶体微结构的直径对低基频光功率下的转换效率影响较大,而KDP晶体微结构的长度对高基频光功率下的效率影响较大。通过研究二次谐波的偏振特性,得出KDP晶体微结构中进行了 Ⅰ类相位匹配。之后,制备了一维 ANDS(4-氨基-4-硝基二苯硫醚,4-amino-4-nitrodiphenylsulfide)样品,并首次报道了一维ANDS样品的纳秒脉冲倍频。利用长8mm、截面尺寸为71μm的ANDS样品,在359.26mW的基频光功率下产生1.93mW的532nm光功率。结果表明,在相同的横截面尺寸下,较长的样品具有较高的转换效率。而对于长度相同的ANDS样品,样品横截面尺寸越大,倍频效率越高。相关成果发表在IEEE Photonics Technology Letters,2019,vol.31,no.13,page.1080-1083 与Optical Materials,2020,vol.110,page.110464 上。常见纳秒紫外激光器采用带有紫外波段高透过率膜层的输出镜来分离基频光、倍频光和紫外光。然而,同时具有紫外-可见光-红外波段透过或反射的光学涂层价格高昂,并且通常具有较低的损伤阈值。本论文介绍了一种既能实现波长分离又能抵抗紫外光损伤的布儒斯特角切割的LBO晶体三倍频的方法,利用凹凸腔镜来补偿布儒斯特角带来的像散,并通过合理的谐振腔设计,抵消由增益介质的热透镜效应带来的谐振腔不稳定性。为提高紫外激光的输出功率,在凹凸腔实验基础上,采用平平腔进行更高泵浦功率的实验。最终在泵浦功率为29W,重复率为50kHz时,得到了脉宽为14.2ns的5.6W高光束质量的紫外激光。对激光器运行和非线性转换中的光束质量变化进行仿真,仿真与实验结果一致。本文的泵浦紫外转换效率高于已有的腔内紫外纳秒激光器转换效率的数据。相关结果发表在 Journal of Optics,2019,vol.21,no.11,page.115501 上。宽带三倍频过程既要满足相位匹配,也要满足群速度匹配。为了提高皮秒光纤激光器的宽带非线性转换效率,论文探讨了一种采用折返点相位匹配倍频、双晶体级联三倍频的设计方法。该方法在基频光光谱宽度为5.5nm,输入基频光功率为8.6W时,获得中心波长为515nm的倍频光,输出功率为4.52W,中心波长为343nm的三倍频光,输出功率为2.39W。倍频和三倍频转换效率分别为52.6%和27.8%。这是首次采用折返点相位匹配倍频和双晶体级联三倍频相结合来实现宽带三倍频皮秒紫外激光产生。相关成果发表在Optics and Laser Technology,2021,vol.141,page.107105 上。对高重复频率皮秒再生放大器及之后的倍频、三倍频系统进行了实验研究。首先搭建了再生放大和两级单通放大光路,采用光纤激光器作为种子源,Nd:YVO4晶体作为增益晶体,808nm激光二极管作为泵浦源,获得了10.9W/10ps/100kHz的皮秒脉冲激光。然后将放大后的皮秒激光通过LBO晶体进行倍频和三倍频,并通过调节偏振,改变光路方向,选择激光器输出波长。最终获得倍频光功率为6.5W,脉冲宽度为8ps,三倍频光功率为2.76W,脉冲宽度为7ps。将设计光路研发成激光器样机,整个光路放置在水冷板上,通过水冷机通水散热,并将相关电路固定在水冷板的另一侧,做成了激光器一体机,大大减小了激光器整机体积。