论文部分内容阅读
我国工业发展迅速,汽车的生产与需求都大幅上升,一辆汽车的产出,往往需要经过上万道工序,组成的几百条流水线来完成的。链式输送机广泛用于汽车装配流水线的输送工作,现有输送机上的输送链均为滚子链,随着对输送机可靠性、同步性和环境友好性要求的提高,滚子输送链的自身特点制约着链式输送机的进一步发展,亟需研究新型输送链系统来提高几百条流水线上链式输送机的同步性、可靠性和环境友好性。本文通过分析输送链对输送机性能的影响和齿形链的性能,提出了双节距分时啮合齿形输送链,并开展了双节距分时啮合齿形输送链系统各部件参数的数学建模、啮合分析、可靠性和环境友好性的研究。以应用齿形链在链式输送机上为目标,提出了双节距分时啮合齿形输送链,双节距分时啮合齿形输送链链板的设计特点,双倍节距是在啮合节圆上双倍节距,每个链板上分布三个齿,中间齿廓和一、三齿廓的外齿廓为直线齿廓,一、三齿廓的内齿廓为外凸的曲线齿廓。双节距分时啮合齿形输送链与单倍节距相同的外啮合齿形链相比,以单倍节距为15.875mm,链轮齿数45为例,每节相同片数的链条,每米自重降低了24.6%,根据双节距分时啮合齿形输送链链条—链轮—链轮加工刀具的相关耦合参数,设计了直线齿廓双节距分时啮合齿形输送链链轮和负变位渐开线齿廓双节距分时啮合齿形输送链链轮,建立了渐开线齿廓双节距分时啮合齿形输送链链轮负变位系数的数学模型,对与负变位渐开线齿廓双节距分时啮合齿形输送链链轮相啮合的双节距分时啮合齿形输送链链条进行了参数修正。针对工程实际,设计了适用于双节距分时啮合齿形输送链链式输送机的张紧装置。对双节距分时啮合齿形输送链系统的啮合理论进行了系统的研究,双节距分时啮合齿形输送链紧边啮入过程在一个啮合周期内分为三个阶段:随着链轮的转动外凸的内齿廓与链轮接触啮合、转化为相邻链节的外齿廓啮合和中间齿廓啮合定位。对双节距分时啮合齿形链进行了假想坐标系的建立,利用坐标变换理论进行双节距分时啮合齿形输送链紧边啮入过程中一个啮合周期的数学建模。通过对双节距分时啮合齿形输送链系统的运动学和动力学分析,得出双节距分时啮合齿形输送链系统的速度、加速度的变化和双节距分时啮合齿形输送链链式输送机在不同输送方式下,链条承载的数学模型。把双节距分时啮合齿形输送链链条的紧边简化成无质量的弦线连接的一组离散质量系统,求出双节距分时啮合齿形输送链系统紧边的固有频率。根据双节距分时啮合齿形输送链链条和直线齿廓双节距分时啮合齿形输送链链轮的设计参数进行实体建模,以单倍节距为15.875mm,链轮齿数45为例,建立了双节距分时啮合齿形输送链系统的运动学模型和啮合冲击模型,动态的模拟了双节距分时啮合齿形输送链系统的啮合过程,对双节距分时啮合齿形输送链和双节距滚子输送链进行对比仿真,仿真结果显示,双节距分时啮合齿形输送链系统的紧边链条波动降低59%、瞬间接触力最大值只是双节距滚子输送链系统的51.9%。利用封闭力流链式试验台对双节距分时啮合齿形输送链系统和双节距滚子输送链系统进行噪声和磨损伸长的对比试验,以单倍节距为15.875mm,链轮齿数45为例。试验结果显示,与双节距滚子输送链系统相比,在转速为200rpm,载荷为2kN时,双节距分时啮合齿形输送链的噪声降低2dB,随着转速的增加,噪声差值明显增大;在转速为300rpm,载荷为2kN时,250小时的磨损伸长试验,试验结果显示磨损伸长率仅为双节距滚子输送链的46%,因此双节距分时啮合齿形输送链系统提高了链式输送机的可靠性和环境友好性。根据研究成果申请了发明专利“双节距分时啮合齿形链链板”,专利号:201110233079.9;授权公告号:CN102287483B。本文在总装备部“CDX01项目链传动系统降噪”的资助和支持下,对链式输送机进行研究,在深入分析双节距分时啮合齿形输送链的啮合理论的基础上,提出了双节距分时啮合齿形输送链系统的设计方法,并对单倍节距为15.875mm,链轮齿数为45的双节距分时啮合齿形输送链系统进行了设计计算、仿真分析及试验研究。