半参数变系数部分线性度量误差模型中的序列相关检验和经验似然

来源 :中南大学 | 被引量 : 7次 | 上传用户:eesilver
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半参数变系数部分线性模型是近年来才提出的一个内容丰富,应用广泛的新模型。该模型包括了许多通常的参数,半参数和非参数回归模型。线性回归模型,部分线性回归模型和变系数模型都是该模型的退化情形。和参数线性模型或者半参数部分线性模型相比较,半参数变系数部分线性模型允许更灵活的函数形式,同时避免了许多“维数祸根”问题。 在经典的回归模型中,一般假定误差项是相互独立的,且具有相同方差的白噪声。如果独立性假设破坏了,则模型存在序列相关;若方差不等,则称模型存在异方差。若模型存在序列相关性,则会导致如下问题:参数估计量非有效;变量的显著性检验失去意义,其他检验也是如此;模型的预测失效;可能忽略了某些重要的解释变量,甚至是模型被误用等。若模型存在异方差性,也会存在同样的问题。因此,在统计推断之前,检验模型是否存在序列相关和异方差很有必要。 多年来,人们已经认识到检验线性回归模型中误差项是否存在序列相关的重要性,并且对这个问题进行了广泛深入的研究。而对非参数和半参数回归模型中的序列相关检验研究较少,直到最近才有人开始研究多元回归模型,部分线性模型,有界非参数函数,半参数时序模型和半参数panel数据模型的序列相关检验。至于近年来提出的半参数变系数部分线性模型和半参数变系数部分线性时序模型,其序列相关检验至今鲜有报道。因此,本文在方差齐性的假设下,详细研究了这些模型的序列相关检验问题,得出了一些有益的结果。 在实际应用中,由于人为或系统的原因,度量误差总是存在的,因此,研究度量误差模型具有更大的实用价值。线性度量误差模型和部分线性度量误差模型的估计和性质已被广泛研究,而半参数变系数部分线性度量误差模型的研究尚未引起重视。目前关于这个模型的研究主要是You和Chen(2006)的论文。本文以You和Chen(2006)提出的估计和性质为基础,在线性部分具有可加度量误差和误差协差阵已知(识别条件一)的情况下探讨了半参数变系数部分线性度量误差模型中的序列相关检验问题:接着在度量误差的协差阵和模型误差方差的比值已知(识别条件二)的条件下,得到了半参数变系数部分线性度量误差模型的参数估计和非参数估计及其大样本性质,并在此基础上研究了该模型的序列相关检验问题。 关于上述模型中的异方差检验,本文尚未考虑,但这个课题值得深入研究。 经验似然是Owen(1988,1990)提出的一种非参数统计推断方法。这一方法与经典或现代的统计方法比较有很多突出的优点,如:用经验似然方法构造置信区间有域保持性、变换不变性及置信域的形状由数据自行决定等诸多优点。正因为如此,这一方法引起了许多统计学家的兴趣,他们将这一方法应用到各种统计模型及各种领域。本文提出了用经验对数似然比来检验半参数变系数部分线性模型及其度量误差模型中的序列相关性,并且在测量数据具有可加误差的情况下考虑了其度量误差模型中的经验似然推断。此外,本文也研究了纵向的半参数变系数部分线性模型的块经验似然推断。 本文的研究成果主要有以下五个:第一,把经验似然引入半参数变系数部分线性模型的序列相关检验中,提出了经验对数似然比检验:第二,把经验似然引入含度量误差的半参数变系数部分线性模型的序列相关检验中,在识别条件一和识别条件二下分别得到了经验对数似然比的非参数Wilks’定理:第三,把Li和Hsiao(1998)的方法推广到了半变系数部分线性模型、半参数变系数部分线性度量误差模型、半参数变系数部分线性时序模型和半参数变系数部分线性panel数据模型中来检验序列相关;第四,把经验似然应用到半参数变系数部分线性度量误差模型中,丰富和发展了经验似然理论;第五,把块经验似然应用到纵向的半参数变系数部分线性模型中,得到了所提块经验对数似然比的渐近卡方分布。
其他文献
配置法是近二、三十年发展起来的以满足纯插值约束条件的方式,寻求算子方程近似解的数值方法,具有无需计算数值积分,计算简便及收敛精度高等优点,使之在工程技术和计算数学的许多
本文在模糊选择集正规以及所涉及的t-模左连续条件下,将Arrow以及Bandyopadhyay的工作进行了模糊化,得到了模糊选择函数合理性刻画的一些结论,其主要研究内容归纳如下: 首先,我
组合计数问题具有重要的理论意义和实际意义,它涉及结构性和对称性两大方面.在文[6]中,杜清晏教授引入了图的色轨道多项式的定义,从而使图的着色与图的结构性、对称性有机结
学位
学位
微细电火花加工技术是一种重要的加工技术,无论在军用设备生产还是民用设备生产,这种加工技术都起到了非常重要的作用。表面粗糙度是衡量零件加工工艺水平高低的重要因素。表面
学位
车间作业调度是制造系统的一个研究热点,也是理论研究中最为困难的问题之一,目前已成为CIMS(Computer Integrated Manufacturing Systems,计算机集成制造系统)领域内的重要研
本文在现有研究的基础上,提出了mCNNE神经网络集群以及相应的算法,同时,还给出了集群误差函数与内部各神经网络误差函数之间严格的数学关系。mCNNE神经网络集群最重要的特性
学位