【摘 要】
:
高精度空间惯性传感器是空间引力波探测的核心技术之一,其敏感轴在测量频段内的加速度噪声扰动需达到10-15m?s~2?Hz1?2量级。惯性传感器硬件电路主要包括位移传感和静电反馈单元,敏感探头主要包括电极框架和检验质量,研究表明千克级检验质量初始释放的扰动速度可达10-6m?s量级,为了实现检验质量保持在电极框架中心位置,此时需要百伏级的静电驱动电压才能实现捕获控制。本文即针对百伏级静电驱动单元的方
论文部分内容阅读
高精度空间惯性传感器是空间引力波探测的核心技术之一,其敏感轴在测量频段内的加速度噪声扰动需达到10-15m?s~2?Hz1?2量级。惯性传感器硬件电路主要包括位移传感和静电反馈单元,敏感探头主要包括电极框架和检验质量,研究表明千克级检验质量初始释放的扰动速度可达10-6m?s量级,为了实现检验质量保持在电极框架中心位置,此时需要百伏级的静电驱动电压才能实现捕获控制。本文即针对百伏级静电驱动单元的方案设计和实验验证展开研究,取得的主要成果如下。首先,完成了天琴计划高精度空间惯性传感器静电驱动单元的主要需求指标论证。在此基础上,提出了基于常压运放和高压三极管分立器件集成的设计方案:通过量程切换兼顾高精度空间惯性传感器捕获模式(30倍放大)和科学模式(6倍放大)的要求。本文详细研究了电路的整体设计方案,其中选用自稳零与斩波稳定组合型运放以抑制电路的低频1/1)噪声;选用高精度且温度系数小于50 ppm?C°的电阻以获得高稳定放大倍数;使用并联电压负反馈以稳定电路的放大倍数;选用等效输入电压噪声谱密度是10-8V?Hz1?2量级的双极结型晶体管以降低高压单元的噪声。其次,在满足电路设计结构下,具体深入研究了两种结构的电路,其中一种电路具有非对称的晶体管组合结构,而另一种电路具有对称的晶体管组合结构。本文对这两种电路进行了详细的传递函数分析和低频噪声分析,结果表明两种电路在两种量程下的理论截止频率都是1.6 k Hz,且两种电路在两种量程下的理论本底噪声在1m Hz处都小于10μV?Hz1?2。最后,完成了两种电路的实验测试与验证,结果表明在供电±150 V时,两种电路带宽的截止频率均是1.6 k Hz,当增益是6倍时,非对称式晶体管结构电路的本底噪声在1 m Hz处达到1.35μV?Hz1?2,对称式晶体管结构电路的本底噪声在1 m Hz处达到1.36μV?Hz1?2,当增益是30倍时,两种电路的最大输出电压均能达到±146.3 V。
其他文献
<正>教学理念(一)以促进深度学习为目标所谓深度学习,不是增加学习的难度,而是强调“学习的意义感”。学习的意义感是学生对学习内容、学习过程和学习活动方式在价值识别、价值评判和价值确认的基础上产生的一种积极的意义体悟和意识过程[1]。基于这一理念,笔者在教学设计中,注重让学生将已有的知识、生活经验与新素材新情境新问题相联结,注重历史认识的形成和核心素养的培养,真正达到有发展性的教学。
金属卤化物钙钛矿纳米晶体由于具有高的发光量子产率和较长的载流子扩散长度而受到人们的广泛关注,在这类钙钛矿材料中,明暗激子态与自旋轨道耦合、晶体场对称性以及温度密切相关,因此,探索激子能级精细结构对于钙钛矿材料在光电、自旋电子学领域的应用具有重要意义。实验表明。小尺寸量子点有更强的自旋轨道耦合作用和更长自旋寿命,因此,在低温下,当热涨落小于亮暗能量分裂时,可以获得大量的暗激子居群,从而对激子本征能级
腔光力系统具有集成度高、可操作性强且能为不同器件的连接提供桥梁等优点,在精密测量、光通信、光存储、基态冷却等方面都有着广泛的应用前景,成为近年来物理学的研究热点之一。在腔光力系统中有一种现象和冷原子介质中的电磁诱导透明(Electromagnetically induced transparency,EIT)对应,称为光力诱导透明(optomechanically induced transpar
随着科技的迅速发展,柔性压力传感器已经渗透到人们生活的方方面面。基于此,研究人员对柔性压力传感器的研究也不断深入,主要包括器件结构的创新和新材料的开发。其中,离子导电水凝胶由于具有高含水量、优异的柔性、良好的生物相容性等特点,已经被广泛用作柔性压力传感材料。但是目前大多数的研究集中在电阻式和电容式柔性传感器上,器件必须由外部电源驱动才能正常工作。为了解决这个问题,本论文基于机械-电位转换机制(MP
近期,非厄米系统的奇异点(Exception Point,EP)及其领域的静态结构和动力学演化过程都成为了热门的研究方向。大量相关工作都证实了动力学手性演化现象的存在。在第一章介绍的工作里,大多数研究的都是在一条连续的参数路径上进行的缓慢演化过程;而在另外的研究中,即使经历的不是连续的参数路径,也依然会选择经过足够长的演化时间来达成期望效果,而未考虑如何细致地优化演化过程。在第二章中,为了控制系统
低维量子磁性材料具有丰富的磁结构和新颖的磁现象,比如磁各向异性、spin-flop相变、多重磁转变、量子磁化平台等,时至今日仍然是凝聚态物理的热门研究方向。目前报道的基于过渡金属硫酸盐化合物的量子磁性研究数量有限,因此分析该类低维磁性材料的量子磁性具有相当重要的意义。在本论文中通过传统的水热法,成功合成了一个新的一维自旋链化合物C6H24FeN3O12S3,一个自旋四聚体团簇化合物C20H60Fe
自巨磁电阻效应发现以来,自旋电子学的研究已在科学技术和国民经济领域都取得了巨大的成功。当前自旋电子学的核心功能结构主要是“准三维”的磁性多层膜,随着科学技术对信息存储密度的要求进一步提高,自旋电子学的结构单元必然要向更低维度发展。石墨烯纳米带(graphene nanoribbon,GNR)具有较长的自旋扩散长度,同时也是一类新颖的拓扑量子材料平台,在准一维自旋电子学器件中具有广阔的应用前景。最近
公共建筑中,空调系统的电耗占建筑总电耗的40-50%,将对我国节能减排目标产生严重影响,开展建筑物节能减排工作成为当务之急。此外,办公建筑空调系统中多联机系统的应用越来越普遍,负荷预测应用于多联机系统的优化控制中,并将优化算法和传统的控制策略进行合理结合,使其能够针对复杂的环境有较强的适应能力,使系统能够有较好的控制效果,并可以有效地节约能源消耗。而目前的大多数负荷预测模型难以在实际应用中发挥作用
多铁性材料是一类同时具有多种铁性有序相的新型功能材料,因蕴含丰富的物理性质使其在多功能电子器件领域具备巨大的应用前景,从而受到广泛关注。正交锰氧化物GdMn2O5作为第II类多铁材料,表现出了丰富的磁相变和新颖的物理现象。本论文利用脉冲强磁场技术,探究了GdMn2O5在极端条件下场诱导的磁相变以及奇异的磁电耦合特性。主要内容如下:(1)概述了多铁性材料的研究背景及其分类,简单介绍了磁诱导铁电相变主