【摘 要】
:
随着国民经济发展,我国油气资源的勘探和开发逐渐向海上拓展,并且已经从浅海扩大到深海。深水油气开发中,海底多相流量计作为水下生产系统中重要装备之一,对其测量精度的要求日益严格。井口采出液通常为气液混合物,与单相流相比,两相流动具有强烈的波动性和随机性,工作在两相流中的计量仪表常处于极不稳定状态,导致两相流量的准确计量变得十分困难。本文采用数值模拟与实验研究相结合的方法,探究了气液两相流经过旋流叶片后
论文部分内容阅读
随着国民经济发展,我国油气资源的勘探和开发逐渐向海上拓展,并且已经从浅海扩大到深海。深水油气开发中,海底多相流量计作为水下生产系统中重要装备之一,对其测量精度的要求日益严格。井口采出液通常为气液混合物,与单相流相比,两相流动具有强烈的波动性和随机性,工作在两相流中的计量仪表常处于极不稳定状态,导致两相流量的准确计量变得十分困难。本文采用数值模拟与实验研究相结合的方法,探究了气液两相流经过旋流叶片后螺旋流的诱发与演化规律,提出的气液两相流量计量新方法对于创新多相计量理论、自主研发新一代多相计量装置具有重要意义。主要完成的研究工作如下:建立管内气液螺旋流三维模型,对旋流叶片的螺距和中心轴直径进行优选,确定了分离效率高、压降损失小的旋流叶片用于实验研究,同时确定了螺旋流的理想测量位置在叶片下游32~50mm。建立超声波测量环状流液膜厚度的二维模型,研究了超声波在管内的传播过程,通过分析回波曲线证明了超声非介入式方法测量液膜分布的可行性和准确性。开展超声多普勒回波标定实验进一步验证模拟结果。以空气和水作为实验介质,在气液两相流环道上开展了管内气液两相螺旋流测量实验。实验的液相折算速度范围为0.036m/s~0.346m/s,气相折算速度范围为2.94m/s~23.25m/s,实验流型覆盖分层流、波浪流、段塞流以及环状流。实验分为有旋流与无旋流两部分。测试段分别布置有旋流叶片、超声多普勒测速仪、丝网传感器和数据采集系统。实验使用两个超声探头,分别布置在叶片下游32mm和40mm处,用来同时测量环状流液膜速度和液膜厚度,对液膜速度曲线进行环面积分从而获得液相流量。实验同时使用丝网传感器测量系统获得相同工况、同一位置下的气液相分布信息,将软件后处理得到的测量结果与超声多普勒测量结果进行比较。分别建立环状流气相、液相连续性方程和动量守恒方程,通过简化模型推导出液膜流速、液膜厚度与气芯速度之间的关系式用来反演气芯速度,再通过速度面积公式计算出气相流量。实验结果表明,波浪流、段塞流经过旋流叶片后可诱发生成环状流,当入口流型为半环状流或不均匀环状流时,环状流液膜分布最为均匀,且维持时间也最长。实验的液相流量计量误差基本小于10%,而气相流量反演误差较大,在20%以内。
其他文献
当前油田井下注水技术主要向精细分层注水和自动监测调控方面发展。实现井下分层注水流量的精确测量和调控是注水技术发展的关键。为此,本文设计一套新型油田井下注水流量智能测调系统实现分层注水流量的精确测量和调控。论文的主要工作和研究成果如下:(1)提出一种外置式多超声流量测量方法。超声波换能器采用外置式安装方法,避免了高压密封、受油污影响、高压疲劳等换能器长期工作稳定性问题。采用三流量计冗余结构,大流量时
伴随着科学技术的迅猛发展,传感器及传感技术得到了广泛应用。作为检测、收集和监测信号的前端,传感器在国防、医学和生态质量监测等现代科技领域被广泛地应用。氨气是最常见的有毒有害气体之一,它广泛地存在于人们的生产生活中。因为氨气所引发的日益严重的污染问题给国家和人类社会造成了大量的损失。因此,实现对氨气的快速高效检测对于保障人身安全和保护环境具有重要意义。本文首先在室温下通过表面活性剂辅助合成法制备了基
印刷电路板式换热器(PCHE)具有体积小、结构紧凑、换热效率高和耐高温高压等优点,在核工业领域有着广阔的应用前景。因而深入开展其内部的流动传热机理、力学特性和性能优化等方面的研究,对于PCHE的优化设计与工程应用具有重要的指导意义。本文针对翼型翅PCHE的流动传热特性及力学性能开展了系统性的研究,分别对翅片布置方式、流道结构参数、翅片特征参数及板片结构参数进行了优化,并针对应力集中问题提出了一种新
随着各种先进钻井技术的发展,需要实时传输到地面系统的井下数据越来越多,而现有的随钻数据传输技术传输速率较低,无法满足实际钻井需求。本文尝试将成熟的水声通信技术应用于随钻数据传输,主要从理论研究、仿真分析、信道干扰分析三个方面开展工作。首先,介绍了随钻数据传输技术的发展历程,总结现有无线随钻数据传输技术的国内外研究现状,对比分析了基于钻井液的随钻声波数据传输的优势。其次,阐述了声波沿着钻井液信道传输
随着5G时代的到来,5G网络所特有的高数据传输速率和低网络延迟将极大地促进物联网的蓬勃发展,而作为物联网实现万物互联的关键技术之一的射频识别技术(Radio Frequency Identification,RFID)已被广泛应用于人们日常生活的诸多领域。射频识别技术具备非视距非接触式自动识别的特点,在识别准确率、感应距离、成本花费等方面具有明显的优势,并且在商品零售、物流管理、交通运输和仓储管理
健康是民生的第一要素,是关系到广大人民群众切身利益的第一民生。在当今社会,随着生活水平的提高,人们开始越来越关注自身的健康状况。开发检测人体疾病的技术手段为人民健康提供保障是必不可少的,其中人体呼出气体检测是实现人体疾病早期筛查与诊断的有效方法。因此,针对人体呼出气体的疾病标志物的检测与分析在人体健康监测中是极其重要的,在保障人们民生健康和医疗诊断方面具有重要的意义。疾病严重威胁着人们的身体健康,
CO2驱采出流体在井筒举升和管线流动过程中,溶解于采出液中的CO2因压力降低会逐步析出,会使得原油发泡现象愈发严重。为了缓解分离器因此产生的泡沫“冒罐”问题,提高分离器消泡分离效率,有必要对泡沫的生成衰变行为及影响因素进行分析,以及需要对分离器结构进行有效的改进。本研究设计了一套高压溶气原油泡沫测试实验系统,研究了CO2驱采出流体发泡特性。利用高速摄像装置对泡沫产生至衰变的演变过程进行了记录,将不
垢下腐蚀严重威胁着油田采出水回注系统的安全运行。将阻垢剂和缓蚀剂进行复配使用的方式是目前针对垢下腐蚀最普遍的防治措施。由于垢下腐蚀的特殊性,加剂处理后往往会造成垢下金属的电偶效应,加重垢覆盖区金属的腐蚀。目前关于复配缓蚀阻垢剂的研究着重于研究其对金属的整体缓蚀效果,而关于复配缓蚀阻垢剂对垢下金属电偶效应影响的研究少有报道。本文通过丝束电极技术结合传统电化学测试的方法研究了阻垢剂乙二胺四甲叉膦酸钠(
随着管道服役时间的增长,管网复杂性的增加,管道泄漏时刻威胁着管网的安全运行。管道发生泄漏后,迅速识别泄漏工况并定位泄漏点是解决问题的关键。特别是近年来“智慧管道”的建设成为我国管道发展的新趋势,与“智慧管道”相契合的网络化、数字化、自动化的泄漏检测手段成为油气储运专业人员的研究重点。本文在负压波信号的基础上进行研究,首先,建立一套压力异常告警与专家分析系统,该系统基于C++语言在Microsoft