论文部分内容阅读
随着航空航天技术的飞速发展,近空间、长航时、高超声速飞行器的研究成为热点。高超声速飞行器的工作热环境极其恶劣,如推进系统内燃烧导致的超高温环境,在近空间飞行时飞行器前缘面临的极高气动热。因此,发汗冷却作为一种最有效的主动热防护技术成为航空航天领域的热门课题。在无冷却介质相变的发汗冷却中,以空气作为冷却介质,采用红外测温的方法,分别对不锈钢和金属-陶瓷烧结多孔平板试验件的发汗冷却特性开展实验研究。在不锈钢多孔平板在低温下发汗冷却实验中,通过对沿主流方向的下游温度的测量,分析了冷却介质边界层沿着主流方向的发展规律;在金属-陶瓷多孔平板的高温发汗冷却实验中,通过对平板热端面的温度测量,给出了沿主流方向温度的发展规律,并分析了主流工况、冷却流的注入率对于平板发汗冷却效率的影响规律。为研究非均质多孔介质的渗透特性,以烧结多孔介质为实验基体,分别以纯净的空气、水和乙醇作为流通介质,实验研究流体穿过多孔介质平板的驱动力与其运动特性之间的关系,分析非均质多孔介质在单相流状态下的渗透特性,并重点展示和研究了三种非达西现象,通过对经典渗透率公式拟合实验数据的偏差分析,提出完善达西公式的建议。液态冷却介质具有高相变潜热、存储空间小、输送代价低的特点,开展具有液体冷却工质相变的发汗冷却基础实验研究,根据主流参数的变化,通过调节冷却水的注射量将相变位置控制在烧结多孔介质结构内部,研究高温气流横掠烧结多孔介质平板结构时的发汗冷却特性。探讨了具有相变发汗冷却的力学特性,分析了受毛细力影响的驱动压力降不同于常温下的变化规律;在考量相变发汗冷却效果时,引入平板表面的冷却效率作为评价标准,分析了热流密度对冷却效率的影响规律。在相变发汗冷却基础问题实验研究的基础上,模拟真实工况,在主流马赫数2.19,总压0.14Mpa,热流密度1.4MW/m2电弧加热风洞中,以水为发汗冷却工质,开展烧结多孔介质平板的相变发汗冷却模拟实验研究,讨论发汗冷却过程出现传热恶化现象时,冷却水的温度、平板底温以及腔内压降的相互作用机理,并分析在极高热流密度条件下,冷却腔内压降在驱动力和相变毛细力共同作用下的变化规律。