论文部分内容阅读
期权(Option)是一种赋予持有者在规定期限内按照双方约定的价格购买或出售一定数量某种金融资产(即标的资产Underlying assets)的权利的合约,是在期货基础上产生的一种衍生性金融工具.作为投资组合和风险管理的重要工具,期权得到了越来越广泛的应用,其定价问题也成为学术研究的热点.自1973年Black和Scholes开创性地提出经典B-S模型以来,期权定价理论得到了迅猛发展.B-S模型以其简单易于计算的优点而得到了广泛应用,但是其刻划的市场是平稳的、连续的,这与现实中的金融市场存在很大差异.为了描述具有突发性及不连续性的非平稳市场,人们在扩散模型的基础上引入Poisson过程来刻划标的资产的价格变化,即我们所说的跳扩散模型.1976年,Merton首次把复合Poisson过程引入到跳扩散模型中,假定股价跳跃的相对大小服从正态分布,并在该模型下得到了更加符合实际的期权定价结果.此后Merton(1976)模型得到了人们的广泛关注,成为期权定价方面的热点模型之一极值期权(Extremum option)是一种多资产组合期权,它的收益由多种标的资产在到期日取得的最高价格或最低价格决定,可以使期权持有者获得最大的收益或受到最小的损失.极值期权主要包括极大期权和极小期权两类,其定价上作最早由Stulz和Johnson进行研究Stulz(1982)在经典Black-Scholes模型下给出了两资产欧式极值期权的定价公式,Johnson(1987)又将其推广到多资产的情形.本文将研究欧式极值期权和美式极值期权在Merton(1976)跳扩散模型下的定价问题,主要工作和结论有:第一章,概述了本文的研究背景和选题意义,并介绍了一些必要的预备知识.第二章,研究了跳扩散模型下欧式极值期权的定价问题.首先讨论两资产欧式极值期权,给出极大看涨(看跌)、极小看涨(看跌)期权的定价公式,然后推广到n资产的情形,最后给出了数值计算的结果.第三章,根据百慕大期权逼近美式期权的思想,用2点G-J法给出了跳扩散模型下美式极值期权的近似估计,并给出了数值计算的结果.第四章,对本文的研究内容进行总结并介绍有待进一步研究的问题.