论文部分内容阅读
贵州地处西南岩溶山区中心地带,岩溶多以裸露型、半裸露型为主,区内矿产资源丰富,煤、磷、冶金、化工、电力等产业的各类尾矿、尾渣均需要择地堆存,而岩溶山谷作为天然的尾矿堆存地被作为最优的选择。然而,上世纪建成并投入使用的尾矿库,由于建库初期未进行库区的全面防渗或防渗措施处理不当,尾矿、尾渣中的微小颗粒、强酸、碱废水通过落水洞、漏斗、溶缝、溶隙等进入含水系统,产生岩溶渗漏污染问题。目前,虽然一些尾矿库已停用,但堆填的尾矿在大气降水淋滤作用下仍存在渗漏问题,给周边地下水环境系统造成严重危害。贵州铝土矿主要分布于黔中一带,而赤泥作为氧化铝产业的副产物——尾渣,被大量堆存于岩溶山谷中。本文以具有贵州特色的岩溶山谷型赤泥尾矿库为研究对象,通过探讨岩溶山谷尾矿堆存对地下水系统污染的特征、规律及机理,为有效的控制岩溶山谷型尾矿库渗漏污染,完善相应的闭库封存措施,保护地下水系统免受污染提供科学依据;同时,对岩溶山区新建尾矿库选址及预防、控制尾矿库淋滤渗漏带来的地下水污染问题具有重大的实际意义。本文基于既有工作基础,采用野外调查、勘察、野外试验及室内试验等多种手段综合,运用多孔介质流体动力学、裂隙流理论、环境水化学以及岩溶水文地质学等多学科相关理论,对赤泥颗粒、淋溶液在地下水系统中的迁移及污染机理和规律进行了系统、深入地研究,并采用COMSOL仿真软件建立了研究区地下水流及溶质迁移模型。取得了以下几个方面的认识:(1)研究区岩溶发育较为强烈,地下水类型以裂隙岩溶水为主,大气降水为研究区地下水主要补给来源,岩溶泉为主要排泄形式,形成以集中式点状补给-排泄,以孔隙、微裂隙为储存,大型裂隙为迁移主通道的非均质双重介质储存、径流的补-径-排地下水系统。研究区赤泥库未投入使用之前,地下水水化学类型为弱碱性Ca-HCO3型水,投入使用后,水化学类型转变为K、Na-SO4、Cl型。受控于构造及岩溶发育与分布特征,赤泥淋滤液存在向西北、向南两个方向渗漏的三条途径。(2)从岩土体性质来看,赤泥相当于一种级配良好的类黏性土回填物。颗粒粒径较小,一般为0.11-130.30μm,粒径分布特征总体呈对数正态分布。从化学成分来看,赤泥的主要化学成分为K、Na、Ca、Mg、Fe、Al、Si、Ti等元素。赤泥库内赤泥颗粒、K+、Na+及Ca2+分布特征及迁移受地下水垂直分带性影响。影响赤泥颗粒的迁移主要因素有颗粒的粒径、水动力条件及颗粒的受力情况等,水动力条件的差异性决定了赤泥颗粒迁移的最大粒径,水动力条件越强,产生迁移的颗粒粒径越大。(3)通过室内静、动态淋滤试验研究,揭示了固液比及水的动态对赤泥中离子释放的影响,并以Cl-浓度为基础,确定了各离子与氯离子之间存在线性相关关系,从而可以用单一离子的迁移特征来分析赤泥淋滤液中多种离子迁移奠定基础。建立了赤泥动态淋滤作用下主要离子释放的数学模型,为定量预测大气降雨作用下赤泥中主要离子组分的释放强度提供了理论依据。(4)通过裂隙溶质迁移室内试验研究,揭示了集中式点状补排关系下,地下水径流及溶质迁移的表现特征;揭示了隙宽、隙宽比、流量对溶质浓度过程曲线及峰型的影响;确定了赤泥库污染物迁移通道为多裂隙组合状态下的迁移特征。(5)建立了研究区地下水水流及溶质迁移模型并采用层次分析法(AHP)对研究区水文地质参数进行了分区;采用COMSOL软件对研究区地下水流及溶质迁移进行了仿真模拟。通过模拟值与实测值对比,说明建立的孔隙-裂隙介质地下水运动模型及溶质迁移模型均可用于研究区地下水及溶质迁移预测。(6)选择研究区丰水年及枯水年2种工况对赤泥库污染进行了预测,预测结果表明:丰水年、枯水年各监测点SO42-浓度变化趋势一致。在丰水期,丰水年SO42-浓度低于枯水年SO42-浓度;在枯水期,丰水年SO42-浓度高于枯水年SO42-浓度,其值均接近或超出地下水Ⅲ类水标准值,为研究区地下水污染治理提供理论依据。