论文部分内容阅读
钢结构不耐火,在火灾下容易提前失稳和破坏。钢材高温蠕变现象明显,对结构在火灾下的变形产生很大影响。目前,国内外钢结构的抗火设计尚未考虑高温蠕变的影响,因为缺乏成熟的研究成果作为支撑。因此,深入开展钢材高温蠕变特性研究十分必要。本文进行了国产低合金Q345钢和高强度Q460钢高温蠕变试验。以高温蠕变试验数据为基础,通过数值拟合得到高温蠕变模型参数。利用通用有限元软件ANSYS,分析了钢材高温蠕变对钢柱抗火性能的影响。主要完成以下几个方面的工作:(1)常温材性试验和高温蠕变试验:完成了低合金Q345钢材12个试件的常温材性试验和55个试件高温蠕变试验,完成了高强度Q460钢材10个试件的常温材性试验和49个试件的高温蠕变试验;常温材性试验得到了应力-应变关系曲线、屈服强度、极限强度、弹性模量和极限应变;高温蠕变试验总时间超过1000小时,得到了高温蠕变-时间曲线;(2)高温蠕变模型:介绍了目前常见的七种蠕变模型并比较了其优缺点;在现有模型的基础上,通过对钢材高温蠕变试验数据的数值拟合,得到了ANSYS复合时间强化、Norton及Field&Field三种模型的参数;对比了试验数据与不同蠕变模型拟合结果,并比较了三种模型的拟合结果;(3)有限元分析:考虑残余应力和初弯曲以及高温蠕变,建立了钢柱承载力分析的有限元模型,分别进行了低合金Q345钢、高强度Q460钢常温承载力分析、热分析和钢柱抗火性能分析,得到了钢柱的常温承载力、升温曲线、考虑高温蠕变的钢柱屈曲荷载-耐火极限关系曲线以及屈曲荷载-临界温度关系曲线,并与不考虑蠕变进行了对比。通过试验和分析得到三个方面的主要结论:(1)通过高温蠕变试验可以发现:对于低合金Q345钢和高强度Q460钢,温度在400℃以下时,第一阶段蠕变占主要比例,第二阶段蠕变发展缓慢;随着温度升高,第二阶段蠕变占主要比例,第三阶段蠕变出现提前,尤其是在高应力水平下,蠕变发展迅速,容易出现蠕变断裂现象;特别地,在700℃~900℃范围内,体现出超塑性质,韧性增强,具有较好的延伸率;(2)采用不同高温蠕变模型计算可以发现:三种模型参数均能有效预测高温蠕变,模拟结果与试验结果吻合较好;采用由相同试验温度的数据拟合得到的ANSYS复合时间强化模型、Norton模型的参数进行钢柱抗火性能对比分析可知,同种钢材的耐火极限比较接近,规律一致;建议优先选用Norton模型,其形式简单、模型参数较少、计算方便;(3)通过有限元分析可以发现:有限元验证模型计算结果与试验吻合很好,验证了有限元模型的正确性;有限元热分析结果与四国规范计算结果吻合较好,更接近EC3计算结果;蠕变使处在温度高于600℃或荷载比在0.5以上的钢柱的耐火极限明显降低;在相同温度、荷载比下,计算结果表明低合金Q345钢柱的耐火极限大体上更长;总体上钢柱的临界温度降低2%~17%左右,在相同的荷载比(除0.1和0.9)下,高强度钢Q460钢柱的临界温度要高10℃~25℃;总之,蠕变使构件变形增大,刚度变弱,失效提前,承载力减小,耐火极限缩短,临界温度降低。