纤维素纳米晶/氧化锌杂化材料的结构设计及其生物聚酯膜的改性研究

来源 :浙江理工大学 | 被引量 : 0次 | 上传用户:persistence2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Biodegradable polyesters are a relevant candidate in the field of biomedical applications such as drug delivery,wound dressings,tissue engineering owing to their suitable properties to support cellular growth and proliferation.However,the applications of biodegradable polyesters in the biomedical are limited due to their low degradation rate,uncontrollable degradation for many clinical applications,poor mechanical and thermal properties.Therefore by understanding the combined effects of inorganic Zn O nanoparticles and biomass cellulose nanocrystals(CNCs)from most abundant natural cellulose resources as UV absorber and antibacterial agents into biopolyester especially(poly(3-hydroxybutyrate-co-3-hydroxy valerate,PHBV)matrix with or without the addition of polyethylene glycol(PEG)as organic phase change materials could provide new prospects to the sustainable use of nanotechnology and nanocomposites with improvement in the thermal and mechanical properties for potential applications in antibacterial wound dressings,UV shielding materials,drug delivery,and thermal energy storages fields.In this dissertation,a series of ultra-high performance biopolyester nanocomposites were successfully fabricated by well dispersed of CNC-Zn O nanohybrids with modulated contents as nanofillers into bio-polyester(poly(3-hydroxybutyrate-co-3-hydroxy valerate,PHBV)matrix.The impact of nanofillers content and fabrication techniques on their structures designs and properties were discussed in details.This research can provide a theoretical basis and technical guidance for the preparation and fabrication of these novel biopolyester nanocomposites with multi-functional properties for potential uses as biomedical biomaterials.The main results are summarized as follows:1)Green synthesis of sheet-like cellulose nanocrystal-zinc oxide nanohybrids withmultifunctional performance through one-step hydrothermal method.In this study,wereport novel sheet-like cellulose nanocrystal-zinc oxide nanohybrids(CNC-Zn O)by using aone-step hydrothermal method.Various concentrations of Zn2+ ions were functionalized inCNC surface and a possible mechanism for the formation of CNC-Zn O nanohybrids with hexagonal sheet-like structure converted to the flower-like structure was also presented.Additionally,the sheet-like CNC-Zn O5.0 showed good antimicrobial activity,excellent thermal stability and high photocatalytic activity of 95.21% of MB dye was decomposed after 200 min under UV light irradiation.More significantly,the CNC-Zn O5.0 nanohybrid can be recycled three times with good Turnover frequency values(TOF).Compared to pure CNC,the maximum degradation temperature(Tmax)of sheet-like nanocrystal-Zinc oxide nanohybrid with the addition of 5 mmol Zn2+ ions(CNC-Zn O5.0)nanohybrid was improved by 23.1 ℃,and its limiting oxygen index increased up to 49.6%.This work provides a simple preparation procedure of sheet-like CNC-Zn O nanohybrids with good antimicrobial,photocatalytic and thermal properties for attractive applications as biomedical materials and flame-retardants.2)Sheet-like cellulose nanocrystal-Zn O nanohybrids as multifunctional reinforcing agentsin biopolyester composite nanofibers with ultrahigh UV-Shielding and antibacterialperformances.The uses of inorganic metal oxide and Zn O nanohybrids as UV absorbershave potential to increase the production of UV-protective textile,which will also overcome the drawbacks of organic molecules and prevent negative impacts on human health and environment.In this work,sheet-like cellulose nanocrystal-Zinc oxide(CNC-Zn O)nanohybrid was successfully developed by a one-step hydrothermal method.The obtained CNC-Zn O nanohybrids as UV absorber and antibacterial agents were introduced into biopolyester(poly(3-hydroxybutyrate-co-3-hydroxyvalerate,PHBV)by using electrospinning process.The addition of sheet-like CNC-Zn O can greatly enhance PHBV thermal stability and crystallization ability.In addition,excellent antimicrobial ratios of Escherichia coli and Staphylococcus aureus,and high absorbency of solution A(9.82 g/g)were obtained for the composite nanofibers with 5 wt % CNC-Zn O.Moreover,most of the UV irradiations were blocked out for both UVA(99.72%)and UVB(99.95%)with high UPFvalue of 1674.9 in the resulting composite nanofibers with 9 wt % CNC-Zn O.This study provides a novel method to produce sheet-like CNC-Zn O with multifunctional properties and its nanocomposite for potential uses as wound dressings and other functional biomaterials.3)In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites byincorporating cellulose nanocrystal-Zn O nanohybrids.Fabrication and characterization ofbiodegradable nanocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)matrix reinforced with cellulose nanocrystal(CNC-Zn O)nanohybrids via simple solution casting process for possible use as antibacterial biomedical materials is reported.The obtained nanocomposites exhibited good antibacterial ratio of 95.2-100% for both types of bacteria namely S.aureus and E.coli and showed 9-15% degradation after one week.The addition of CNC-Zn O showed a positive effect on hydrophilicity and barrier properties.More significantly,the nanocomposites with 10 wt% CNC-Zn O showed enhancement in tensile strength(140.2%),Young’s modulus(183.1%),and the maximum decomposition temperature(Tmax)value increased by 26.1 ℃.Moreover,this study has provided a possible mechanism for using such nanofillers on the hydrolytic degradation of PHBV,which was beneficial to obtain the high-performance nanocomposites with modulated degradation rate for antibacterial biomaterials.4)Sun-light and thermo-sensitive responsive of PHBV phase change materials withfunctionalized Cellulose nanocrystal-Zn O nanohybrids for thermal energy storage andcontrollable drug release behavior.In this study,we demonstrated sunlight andthermo-sensitive responsive functionalized cellulose –Zn O nanohybrids based PHBV phase change fiber composites(PCF)for thermal energy storage and controllable drug release behavior.It is found that under sunlight irradiation,the PCF composite could absorb light and then transformed light into heat and stored in the PCF composite to produce energy withefficiency between(46.3-34.2%)for the PCF sample without/with the addition of CNC-Zn O nanohybrid.It is found that when the temperature is close to melting point temperature at 60 ℃,the PCF composite with the addition of 5 wt% CNC-Zn O showed percentage of sustained release more than 40.5% and 78.9% of Tetracycline hydrochloride(TH)drug were released over the two weeks with the low and high loading of TH drug content of(10,30 wt%).Thus,the responsiveness of PCF composite aligned with heating has high responsive to temperature-sensitive for controllable accumulative drug release behavior.It is interesting to mention that the high thermal stability of PCF composite as prepared in this work could make them more beneficial and promise in the practical applications for thermal storage and drug delivery.
其他文献
现行户籍制度与当代中国经济转轨、社会转型的发展形势极不适应,特别是城乡二元户籍体系制约了我国经济社会发展进步,与推进以农业转移人口市民化为方向的城镇化建设不合拍。大
把高校实验室仅仅理解成高校教学育人的辅助设施是错误的。提高实验室的整体水平,单靠大量精密贵重的仪器设备远远不够,还要建立一支稳定的、高素质的专业技术队伍。文章分析了
结合教学实践从设计概念冲突;提供“成功机会”;展示物理的科学美等方面探讨学生物理学习兴趣的培养。
<正> 在《资本论》第二卷第一篇中,马克思分析了单个资本循环过程的三个阶段和三种职能形式,三种循环形式及其统一,创立了科学的资本循环理论,其中心是资本在循环中的形态变
占有制度是物权法中一项不可缺少的制度,在物权法中占有重要的地位。但我国《物权法》对占有制度的规定却比较简要。本文分析了几个典型国家和地区的占有制度,希望对我国物权
欠发达地区央行在实施信贷政策中普遍存在政策作用环境欠佳、传导渠道缺失、手段乏力等难点。实施信贷政策,必须积极推进金融改革,造就市场敏感性强的金融市场主体;以监测、分析
随着我国大气污染防治力度不断加大,工业锅炉污染防治已被提到前所未有的高度。本研究基于技术扩散理论及工业锅炉污染物现场实测数据,首次系统构建基于实测的工业锅炉不同污
本文介绍计算机辅助教学(CAI)在师专化学教学中的重要作用及应用,以及对CAI的教学效果进行分析,提出使用过程中将存在的问题及建议。
本文以江苏大学本科生作为抽样调查对象,采用问卷调查法及深度访谈的形式,对"拇指文化"在高校思想政治教育工作中带来的负面影响进行分析。结果显示,"拇指文化"发展至今,已然