论文部分内容阅读
高功率全固态激光器是激光器发展的一个重要方向。立方结构氟化铅晶体由于具备性能稳定、光学各向同性、低声子能量和容易实现大尺寸生长等优点,能够使激光器在大平均功率下工作,因而有望成为高功率大能量固体激光器理想的基质材料。Yb3+具有不存在激发态吸收、无上转换、可实现高掺杂浓度、量子效率高和荧光寿命长等优点;Tm3+发射的2μm激光在军事、通信、医疗和激光雷达等方面均有重要应用;因此Yb3+和Tm3+掺杂的立方结构的氟化铅晶体将有望成为高功率大能量固体激光器重要的激光增益介质,因此对其生长及各种性能的研究尤为重要。本文系统研究了稀土掺杂(镱和铥)立方结构氟化铅激光晶体的生长、光谱与激光性能。主要包括如下几个方面的内容:
第一部分:氟化铅及铥掺杂氟化铅晶体的生长及性能的研究
1.通过分析各个工艺参数(温度梯度、生长速度)和生长条件(除氧剂含量)对晶体生长的影响,成功生长出直径为30mm透明完整的PbF2晶体,通过XRD、SEM、XPS和化学腐蚀等方法对得到的PbF2晶体进行了相应的质量分析,实验结果表明,用该方法生长出的PbF2晶体具有较高的光学质量,晶体的杂质元素(Pt、C和O)含量很少,不影响晶体在光学方面的应用。
2.对得到纯PbF2晶体的物理性质(密度、比热、热扩散系数和热导率)进行了实验研究,在晶体的热学性质上得到了与参考文献很大差别的实验结果(即室温下纯PbF2晶体的热导率仅为3.15W/m·K)。首先通过理论推导总结出了适用于大量绝缘晶体材料热导率计算的公式,并通过对大量的不同结构的晶体热导率的计算结果与实验结果的比较,证明了该公式的准确和有效性后,对PbF2晶体进行计算并得到了与实验值很接近的结构(室温下纯PbF2晶体的热导率为4W/m·K)。通过分析得出,PbF2晶体由于具有较小的德拜温度(仅为CaF2晶体的一半),所以其具有较小的热导率,而并没有参考文献中介绍的那样优异。通过对PbF2晶体拉曼光谱的测量,确定了其声子能量的范围和最大的声子能量。
3.成功生长出Tm(2mol%):PbF2晶体,晶体的双晶摇摆曲线半高宽为108″,XRD实验结果表明Tm3+的掺入没有改变PbF2基质晶体结构,但使得晶格常数和晶胞体积比纯PbF2晶体略有减小。同时还系统分析了Tm:PbF2晶体中填隙氟离子对Tm离子电荷补偿的方式和在晶体中对称结构。
4.根据J-O理论进算了Tm离子在PbF2晶体的中强度参数Ω2.4.6及振子强度fJ,J'、自发辐射跃迁几率AJ,J’、辐射寿命τrad和荧光分支比βJ。并对Tm:PbF2晶体荧光光谱和荧光寿命进行了表征,对晶体中的自吸收现象进行了合理的解释。在Tm:PbF2晶体中首次实现了激光输出,当激光二极管泵浦功率为8.5W时,获得1.17W的连续激光输出,斜率效率为23%。
第二部分:镱和钠(钾)共掺氟化铅晶体的研究
1.成功生长出Yb:PbF2晶体,并对Yb:PbF2晶体的热学性能进行了系统研究,从理论上分析了掺杂对PbF2晶体热导率的影响。Yb:PbF2晶体的紫外吸收和荧光光谱的实验结果表明在Yb单掺的PbF2晶体中,Yb2+离子不可避免,PbF2晶体在可见波段较强的荧光是源自Yb3+离子与原料中的Tm3+和Er3+的杂质离子的上转换,而并非Yb3+离子的团簇发光。
2.生长了不同掺杂浓度的Na(K),Yb:PbF2晶体,首先研究了Na(K)离子共掺对Yb:PbF2晶体结构的影响,XPS的实验结果表明Na(K)离子共掺可以有效的抑制填隙氟离子在Yb:PbF2晶体中的浓度。晶体的紫外吸收、荧光光谱,实验结果表明Na(K)离子共掺可以有效的抑制Yb2+离子在晶体中的浓度,而Na离子的效果要优于K离子的。
3.系统研究了Na,Yb:PbF2晶体中Na和Yb离子不同摩尔比共掺对Yb离子的影响,实验结果表明通过调节Na和Yb离子的摩尔比,可以改变Yb离子在近红外波段的吸收和荧光光谱的谱带宽度和形状,并从理论上给予了相应的解释。同时还发现随着Na和Yb离子的摩尔比的增加,Yb离子的荧光寿命也不断增加。通过对相同掺杂浓度Na(K),Yb:PbF2晶体的光谱和激光参数对比发现,Na(2mol%),Yb(2mol%):PbF2晶体的综合性能最优越。
4.研究了温度对Na,Yb:PbF2晶体在近红外波段吸收、荧光和寿命的影响,借助低温的光谱,给出了Yb离子在Na,Yb:PbF2晶体中的能级分裂情况。
5.对不用掺杂浓度的Na,Yb:PbF2晶体进行了激光实验,976nmLD泵浦作用下获得了输出功率高达2.65W,中心波长在1045nm的激光输出,斜效率高达41%。采用单棱镜进行光谱调谐实验,获得了从1017nm到1078nm的调谐激光输出。