【摘 要】
:
得益于知识图谱技术的迅速发展和智能问答技术的逐渐成熟,普通的搜索引擎需要用户对链接进行二次筛选的问题逐渐得到了解决。本文借助于深度学习技术,以医疗领域为例搭建知识图谱,将用户输入问题到答案反馈这个流程拆分为三个阶段,从而形成以领域知识图谱为基础的问答系统,旨在整合领域知识,为用户提供简单快捷的信息检索服务。基于此目标,本文的主要研究内容包括以下三个方面:(1)首先,本文提出一种中文命名实体识别模型
论文部分内容阅读
得益于知识图谱技术的迅速发展和智能问答技术的逐渐成熟,普通的搜索引擎需要用户对链接进行二次筛选的问题逐渐得到了解决。本文借助于深度学习技术,以医疗领域为例搭建知识图谱,将用户输入问题到答案反馈这个流程拆分为三个阶段,从而形成以领域知识图谱为基础的问答系统,旨在整合领域知识,为用户提供简单快捷的信息检索服务。基于此目标,本文的主要研究内容包括以下三个方面:(1)首先,本文提出一种中文命名实体识别模型DB-Attention。为避免分词粒度过小和重要词信息丢失的问题,该模型使用融合词典信息的字符级嵌入作为输入,通过Biaffine双仿射注意力机制对用户输入的问题进行特征提取,并在嵌入层融合词典信息。实验证明,本文提出的嵌入方法对细粒度特征的提取能力有3%的F1值提升。Biaffine双仿射机制的引入也使模型可以识别嵌套实体,为问答系统的实现提供了技术支持。(2)其次,提出一种改进的意图解析模型Bi-Text CNN。该模型针对Text CNN无法捕获字符间复杂关系的问题做出改进。首先在Text CNN模型基础上增加一组n-gram预训练词嵌入作为静态语义特征,使用多个卷积核对两种词嵌入进行特征提取,最后进行最大池化得到语句的分类概率。实验表明,Glo Ve词嵌入这种用共现矩阵代替全局矩阵奇异值分解的方法,不仅可以使训练更加平滑,还能在考虑全局语料信息的情况下有效节省4%左右的系统开销。(3)最后,对基于医疗健康领域知识图谱的智能问答系统做了详细的总体设计。为了做好问答系统的数据支撑,收集医疗相关实体4万个,实体间关系24万条,并完成医疗领域知识图谱的构建工作。随后整合DB-Attention模型和Bi-Text CNN模型搭建了B/S架构的智能问答系统。最后对系统各个模块进行了详细阐述并展示了问答系统的前端页面。通过测试,系统准确率为66.3%,验证了系统的可用性。本文提出的模型在实体识别任务中取得了良好的效果,不仅提高了识别实体的效率,还支持嵌套实体的识别。此外,在考虑全局信息的情况下,双通道的意图解析模型也在解析性能和系统开销两个方面,取得了一定的性能优势。基于领域知识图谱的医疗问答系统体现了新型信息检索工具的优越性,为用户提供了搜索引擎外的另一种简单可靠的信息检索途径。
其他文献
随着科学技术的突飞猛进,图像分类技术已经成为计算机视觉领域的一个热点,其中基于局部特征的图像分类在越来越多的领域得到广泛的应用。局部特征算法缺乏足够的普适性,在不同领域上进行实际应用时,都需要进行相应的调整与改进。本文通过对局部特征图像分类技术的研究和分析,提出了基于图像检索与匹配的SURF算法(RM-SURF),并将其应用于子弹弹壳的图像分类上,实现了子弹的溯源。由于弹壳图像数据大规模采集难度大
互联网新闻数据具有时效性强、自由性高、流动性强的特点,它可以及时的反映出社会对某个事件发展情况的态度,因此研究面向新闻领域的事件预测具有重要的意义和价值。以往的研究主要基于时间的事件序列进行事件预测,忽略了词语间的结构关系对事件预测的影响。这使得事件预测存在特征提取不足和预测准确度较低的问题。本文为了更好的提取事件特征以及提高事件预测的准确率,首先设计了基于动态图注意力网络的事件预测算法,同时编码
自然语言是人类进行通信的主要工具,人类间通信的目的主要是进行知识交互。知识是对识的理解和描述,所以对自然语言的研究应该从知识的表示开始,进而研究知识怎样转换成人类能理解的自然语言形式。传统的知识表示方法不能全面统一地表示人类智能的自我意识性、互表性、模糊性及动态性等特点,而基于唯识心理学建立的AORBCO模型能够对多模态知识进行统一表示。为使AORBCO模型所表示的知识能够使人类理解并进行交互,本
目标跟踪作为计算机视觉领域的研究热点,旨在探索如何准确快速地捕获感兴趣目标运动状态,实现强鲁棒性的目标跟踪,相关技术方案可以广泛应用于安全监控、智能交通等诸多领域,具有重要的理论意义与应用价值。然而,现有跟踪方法大多缺乏对全局信息的关注,不能充分利用深层和浅层信息。此外,单纯依赖初始帧的特征进行模板匹配,无法适应跟踪整体过程中目标持续发生外观变化的问题。尤其是对于航拍视角下获取的目标对象,存在目标
UV展开是计算机图形学领域用于三维模型表面纹理贴图的一项技术,主要通过三维模型表面网格的形变,建立三维坐标到二维图像坐标之间一对一的映射关系。由于三维物体表面,特别是非刚体三维模型(例如人体)对于空间坐标不具有不变性,而其相对于表面的二维坐标一般是固定不变的,因此可以将三维模型转化到二维平面下进行研究,另一方面,三维模型的二维图像表示对于基于深度学习的三维物体识别等方面具有一定应用价值和实际意义。
三维人体表面特征点标定的目的,是为了快速、准确的定位受到放射性污染的人体部位,以便于紧急救援工作的开展,保障工作人员和救护人员的生命健康。为了高效的完成人体表面特征点位的准确标定。本文采用了基于三维重建的人体尺寸测量,结合可缩放标准人体模型来实现。主要的工作内容有以下几点:1)人体点云数据获取。在开始使用Kinect获取深度图像数据前,先通过相机标定得到内部参数。通过相机标定得到的成像参数来将深度
目前,公共场所存在极大安全隐患,例如新闻常报道所失踪。行人重识别技术可以有效解决此类人口失踪问题,从同一区域下的不同的摄像头拍出的图像中快捷地检索出失踪的行人。但是在现实情况下,行人身体部分会受到如光线不同、杂乱的背景、分辨率高低、不同摄像机视角和遮挡等条件影响,从而老人或者小孩在大型游乐场会导致行人重识别模型在提取行人特征时会被干扰,没有办法满足应用场景的需求。本文针对以上问题出发,对行人重识别
在航空领域中,现多使用触屏或操纵杆进行多功能显示器(MFD)操控,但由于飞行时操作者双手动作有限,视线交互技术被视为一种前瞻性的输入方式。然而仅使用视线交互存在“米达斯接触”问题即无法有效判断视线是有意还是无意,所以一般将多种交互方式结合使用。其中,通过运动想象(MI)产生的脑电信号与眼动数据相结合方式较为常见。但简单的结合有一定的局限性,不能很好的体现用户意图。故本研究以战机MFD交互为研究背景
区块链是一种去中心化、不可篡改、可追溯、多方共同维护的分布式数据库。共识机制(或称共识协议)是区块链的核心技术,旨在为一个存在一定数量故障或者恶意节点的区块链系统提供区块链账本的一致性与可用性。相关的学者们对共识机制的研究主要分为三类,即中本聪风格账本协议(Nakamoto-style ledger protocol),状态机复制协议(State Machine Replication proto
新一代群智感知(Crowd Sensing)系统在完成大规模、细粒度感知任务的过程中,基于人工智能的分析、推理及决策的作用变得不可或缺,而且越来越重要。群智感知是一个依赖移动智能终端设备广泛参与数据感知计算的开放系统,很容易造成用户隐私数据泄露。联邦学习(Federated Learning,FL)是让一组设备协同训练一个共享的人工智能模型的新兴分布式机器学习方法,模型训练过程中将用户数据保存在用