煤泥滤饼孔隙结构的物理化学调控原理及其实践

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:yoki1120
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在碳达峰、碳中和的大背景下,优化和调整能源结构、高效清洁利用煤炭资源势在必行。煤泥水作为煤炭工业的主要污染源之一,有效的煤泥水固液分离技术成为煤炭清洁利用的关键环节。本文首先研究了化学助滤剂及骨架构建体助滤剂对煤泥脱水效果的影响规律,在此基础上,设计了一种物理化学复合助滤剂以进一步改善煤泥脱水效果。其次,通过原子力显微镜、分子模拟、扩展的DLVO理论计算等手段揭示了助滤剂与煤泥颗粒间的相互作用机理并分析了骨架构建体助滤剂对煤泥滤饼的骨架支撑作用机理,同时,采用低场核磁共振技术和CT扫描技术分析了复合药剂对滤饼水分分布的影响规律以及对煤泥滤饼结构的优化机理。最后,通过颗粒流数值模拟分析了滤饼动态生长规律及细颗粒在滤饼中的迁移规律,研究了不同助滤剂对煤泥颗粒迁移的影响及滤饼结构的调控机制。得到主要结论如下:(1)十八烷基三甲基氯化铵STAC可以提高煤泥水过滤速度,降低滤饼水分,减小滤饼平均质量比阻,显著改善过滤效果。阴离子聚丙烯酰胺5250和非离子聚丙烯酰胺333均可以显著提高煤泥的过滤速度,降低滤饼平均质量比阻,但是会增加滤饼水分。硅藻土、珍珠岩、纤维素均可以不同程度上提高煤泥过滤速度,降低滤饼平均质量比阻,球形SiO2由于粒度大且均匀,在煤泥滤饼中起到了很好的骨架支撑作用,过滤效果改善最为明显。相较于单一助滤剂,本文设计的GH型复合药剂能够进一步提高煤泥过滤性能,随着GH型复合药剂中Micron-SiO2球用量的增加,过滤速度明显增加,滤饼水分和滤饼比阻逐渐降低。(2)原子力显微镜(AFM)原位测试结果表明:在去离子水中,两个煤表面之间的粘附力随pH的增加而降低,并在pH 10时从负值变为正值。在阴离子聚丙烯酰胺5250溶液中,pH 4时粘附力为-2.71 n N,大于pH 10的值。但是,在pH 10时观察到最大的絮凝力(-1.87 n N)和最广的作用范围(45 nm),与沉降试验和絮团尺寸结果相吻合。STAC分子以簇状或短条状吸附到煤表面上,以单层和多层吸附为主。STAC分子在高岭石硅氧面的吸附形态呈现出斑点和点状外观,吸附厚度存在2nm和4nm左右两种情况,发生了单层吸附和双层吸附。STAC分子在高岭石铝氧面的吸附主要表现为斑片状吸附,吸附高度大部分集中在2-3 nm,以单层吸附为主。同时,分子模拟结果表明:由于高岭石铝氧面上的-OH官能团,额外的水分子存在于高岭石001面和STAC分子之间,这些分子可能充当STAC分子在高岭石001表面吸附的桥梁。与STAC分子的其余部分相比,STAC分子的氮原子更靠近颗粒表面吸附。因此STAC分子的烷基链伸入水中,水分子在颗粒表面的移动受到的限制减小,从而使煤和高岭石的疏水性增加,改善了煤泥的固液分离效果。(3)硅藻土骨架构建体的孔多数为通孔,有利于水分流通,而活性炭的孔多数为盲孔,不能形成有效的水分迁移路径,球形SiO2形成的滤饼孔隙率更大,更有利于脱水。同时,CT测试结果表明,复合药剂可以提高滤饼的孔隙率和孔隙的连通性。加入GH型复合药剂后,滤饼孔隙率从1.54%升高到6.67%。孔隙配位数明显增大,出现配位数大于10的孔隙,说明骨架构建体可以有效改善滤饼孔隙的连通性,在过滤过程中为水分的迁移创造出更多的路径,进而降低滤饼水分。另外,滤饼中的孔吼半径比从1.18降低到1.09,降低了水分迁移过程中的毛细阻力,从而显著提高过滤速度,改善过滤效果。GH型复合药剂可以增加煤泥滤饼中吸附水和束缚水的自由度,随着GH型复合药剂用量的增加,煤泥滤饼中吸附水和束缚水的含量从99.059%降低至96.214%,自由水的含量从0.941%升高至3.786%。(4)滤饼中的大颗粒在压力作用下主要发生滑移现象,而细颗粒由于迁移钻隙作用,促使滤饼孔隙率降低。随着细颗粒粒度的减小,颗粒在Y方向上的迁移距离基本呈增大趋势,对于30μm的滤饼主体颗粒而言,颗粒粒度小于15μm时,细颗粒的钻隙现象显著发生。两种表面活性剂均可以对煤泥颗粒产生疏水团聚作用,提高颗粒的粒度,进而提高滤饼的孔隙率及疏松度。加入STAC后,细颗粒的迁移现象明显减弱,煤泥中的小絮团在滤饼形成过程中构成了较为蓬松的结构,使得煤泥滤饼厚度增加了0.014mm,滤饼总孔隙率增加了0.042,过滤效果得到改善。由于絮凝作用,聚丙烯酰胺可以提高颗粒的粒度,形成一定数量的大絮团,降低了细颗粒的迁移,提高了孔隙率。球形SiO2骨架构建体使煤泥滤饼厚度增加了0.014 mm,总孔隙率增加了0.041,避免了颗粒的压缩变形,降低了细颗粒的迁移,因此改善了煤泥过滤效果。GH型复合药剂形成的滤饼结构更加疏松,煤泥滤饼厚度增加了0.034 mm,总孔隙率也明显增加,进一步改善了煤泥的脱水效果。
其他文献
随着人口老龄化进程的日益加剧,由退行性疾病、不恰当运动方式以及骨关节病变等原因造成的骨软骨损伤病变的发生率在不断上升,对患者的身心健康造成了严重的影响。其中由于年龄的增长,软骨组织不断自然磨损所导致的骨关节炎,是造成骨软骨损伤的主要原因。再者由于关节软骨自身缺少神经和血管,导致其几乎不具有自修复能力,同时关节软骨与软骨下骨在解剖结构上相互连接,在生物学功能上彼此影响,造成骨软骨界面的构造精细且复杂
冬奥期间,新晋顶流冰墩墩一墩难求,即使在冬奥结束后,购买依然需要排队。冬奥带红的不仅是一只憨态可掬的小熊猫,冬奥会各个环节中,一批带有中国元素的用品,带给全世界一个不同以往的中国印象。冬奥是一个“向全世界大声讲出中国故事”的好机会。在设计相关工作方面,品牌企业、独立设计师和多所高校等个人或集体为北京冬奥注入了满满的“中国创造力”,处处彰显着中国的文化自信与审美,完美诠释了“用中国设计讲好中国
期刊
随着我国经济的快速发展,现代化进程不断加快,渗透到社会发展的各个领域。尤其随着西部大开发、中西部崛起等战略政策的实施,城乡建设程度加速扩张,机场、高速公路、城市快速路等现代化基础工程规模迅速扩大。但是受地形地貌的影响,城市发展空间不足的矛盾日益突出。为拓展建设用地,综合考虑工程技术、建设成本等因素,充分利用地形开山造地、平沟建城势在必行。考虑到土质区域性及施工经济性的问题,我国中西部地区位于黄河中
低温变形后镁合金动态再结晶(DRX)晶粒细小,但DRX率较低,无法实现强度和塑性的良好匹配。针对此问题,本文基于微米SiCp能够促进镁合金DRX形核的思想,研究了颗粒周围变形区(PDZ)的形成机理,分析了高温压缩变形过程中微量SiCp及SiCp周围PDZ尺寸作用下Mg-5Zn合金的组织演变规律,阐明了SiCp及PDZ尺寸对Mg-5Zn合金DRX和动态析出行为的影响机制。在此基础上,研究微量SiCp
近年来金属材料力学行为的研究已发展为多层次、跨尺度本构模型的建立,大致可分为宏观唯象本构和微细观本构。综合考虑工程问题的计算规模及成本,工程领域多采用唯象本构模型。建立一个能精确且客观地反映材料本质属性的唯象本构是工程问题可靠性分析的基础。AZ31B轧制镁合金由于其较高的比强度、比刚度且生产成本低等优点被广泛应用于工业生产的很多领域。通过轧制加工的AZ31B板材由于晶粒的取向性造成明显的各向异性力
安全环保高效地回收煤炭资源,且广泛适用于保水开采、“三下”开采等特殊开采环境,并能有效地控制地表沉降,对国家能源安全、生态环境安全及煤炭企业经济成本控制等具有重要的意义。传统长壁采煤法控制地表沉降效果有待提高,传统条带采煤法存在回采率低等缺陷,完全充填开采具有生产成本高等缺陷。若能将上述传统采煤方法的优点结合,尽可能规避其缺陷,产生一种新的地下支撑方法和采煤方法,则可进一步提高我国煤炭开采水平。鉴
随着我国煤矿开采地质条件的逐渐复杂化,大量复杂困难巷道相继出现,给煤矿的安全高效生产带来了困扰。全长锚固系统作为锚杆支护的重要组成部分,更好地理解其力学行为和承载特性对复杂困难巷道的围岩控制有重要意义。本文在调研总结现有研究现状的基础上,综合采用试验探究、理论分析和数值模拟的手段对全长锚固系统的力学行为和承载特性进行了系统研究,主要结论如下:(1)研究了锚固系统的承载特性,系统分析了锚固界面承载的
我国铁矿资源储量丰富,但矿物组成复杂且嵌布粒度细,磁选精矿往往需要利用反浮选进一步脱硅后,才能满足冶金的需要。目前利用反浮选工艺“提铁降硅”已成为选矿厂的必备环节,其技术关键主要是反浮选药剂的开发与应用。铁矿反浮选常采用的阳离子捕收剂十二胺,因其在水中的溶解性差、凝固点高,常将其配制成十二胺盐酸盐或十二胺醋酸盐使用,盐酸和醋酸存储困难、药剂配制过程不便、产生的泡沫发粘且长时间难以破裂,造成水和药剂
提到洞穴,对于拥有各种各样洞穴的中国来说,并不是特别稀奇,但是,有一种洞穴在我国却是极其罕见的,这种洞穴就是"海洋蓝洞"。海洋蓝洞如同深蓝色的眼睛一般镶嵌在广袤无垠的海面上。自古以来,人们就对海洋蓝洞展开了各种猜测,而这些猜测使海洋蓝洞变得更加神秘。那么,海洋蓝洞究竟是什么?海洋蓝洞里面有什么?海洋蓝洞危险吗?……现在就让我们一起揭开海洋蓝洞的神秘面纱吧!
期刊
不锈钢的使役性能和耐蚀性由所在环境腐蚀行为决定,其优异耐腐蚀性依赖于表面形成的仅有几纳米厚的钝化膜。钝化膜构成以Cr2O3为主,避免了环境介质对金属表面的侵蚀,因此研究钝化膜组成、结构及在腐蚀介质中的腐蚀机制至关重要。本文基于密度泛函理论,从原子层次构建了奥氏体不锈钢钝化膜Cr2O3表面结构模型,分析H2O、Cl介质吸附于钝化膜Cr2O3表面时,对Cr2O3表面稳定性的影响及腐蚀机制;基于高性能奥