论文部分内容阅读
本文以生活在三种不同生活环境(包括水环境、陆地环境、土壤环境)的9种甲虫为研究对象,从微结构、力学性能、鞘翅联接机制和鞘翅张合几何等方面对甲虫生物材料进行实验和微结构观测,并就实验结果进行对比分析和研究。结构上,鞘翅是非光滑表面,主要存在2种形貌:“犁沟状”条凸形貌和凹坑、凸苞分布形貌,鞘翅断面SEM实验表明鞘翅是一种中空型轻质生物复合材料,由鞘翅背壁层、中空夹芯层和腹壁层构成,而背壁层又是由黑色的致密外表皮层和数层纤维层相互交织后再铺设而成的内表皮层组成,实验得到甲虫鞘翅的比重(单位:kg/m~3)为0.8×10~3~0.9×10~3;东方龙虱前附足吸附脚掌上面布满“鞋形状”微型吸盘,侧缘长有许多微刚毛群,实验得到其最大法向吸附力53.3mN±7.68mN,最大切向吸附力213.5mN±33.53mN,猜测其吸附机制包含微吸盘的真空负压吸附和微刚毛群的Van der Waars力粘附两种。力学性能上,本文对9种甲虫鞘翅进行了纳米压痕实验和拉断实验,纳米压痕实验测定了鞘翅外表皮层的硬度和弹性模量参数值,结果由头部区域至尾部区域呈增大趋势,其力学性能呈现拓扑分布规律,经线性回归得到甲虫鞘翅力学参数值为:硬度0.335GPa±0.130GPa,弹性模量6.920GPa±1.461GPa,而东方龙虱鞘翅硬度为0.475GPa±0.089GPa,弹性模量为8.214 GPa±0.708GPa,分别为甲虫鞘翅平均值的1.41倍和1.19倍,该结果体现东方龙虱鞘翅力学性能较一般甲虫鞘翅优异;拉伸实验表明鞘翅的变形主要以弹性变形为主,鞘翅纵向强度极限要大于横向强度极限,实验得到新鲜鞘翅强度极限值(σb)169.2MPa~194.5MPa,其比强度为0.20~0.22(比强度定义为材料的强度极限σb除以材料的比重ρ),与超轻质镁锂合金相当(0.16~0.21)。联接机制方面,鞘翅采用了“楔形状”榫嵌入式联接机构,头部区域凸出榫片和楔形槽尺寸较小,尾部区域凸出榫片和楔形槽尺寸较大,其几何结构由头部至尾部呈线性增大,在鞘翅的凸出榫片端面均布满朝向一致的微刺突和微凸苞结构,该微结构主要加强鞘翅间的锁合联接,鞘翅的联接机制主要经由两个阶段:一是合翅联接过程,二是锁合联接过程。鞘翅张合机制方面,通过高速摄像机录制的鞘翅张合运动轨迹录像,分析甲虫鞘翅上标记点的三维轨迹来描述甲虫鞘翅的张合运动机制,得到甲虫鞘翅的张合运动机制为:绕经过小盾板位置的单轴的旋转运动;鞘翅仰角在30°~60°之间,甲虫为了最大限度地减少鞘翅在飞行当中的能量消耗而选择了最适应的角度,鞘翅的张合过程易于控制且节能、高效。综合上述,甲虫鞘翅是一种轻质、具高比强度和优异延塑性能的生物复合材料,该研究为航空航天领域对于轻质高强复合材料的设计提供仿生的生物学基础。