【摘 要】
:
拓扑材料由于其电子能带具有特殊的拓扑性质导致其具有奇异的物理性能。发现和研究拓扑材料的奇异物性是目前凝聚态物理研究的热点之一,其潜在的应用将为科学与技术的发展带来新的重大机遇。本文主要研究了最新发现的新型硫族化合物拓扑绝缘体和第二类外尔半金属的高压行为。通过高压原位电阻、霍尔系数、交流磁化率等低温输运性能的测量,并结合同步辐射大科学装置上所进行的高压原位X射线衍射实验,对研究体系开展了深入系统的研
【机 构】
:
中国科学院大学(中国科学院物理研究所)
【出 处】
:
中国科学院大学(中国科学院物理研究所)
论文部分内容阅读
拓扑材料由于其电子能带具有特殊的拓扑性质导致其具有奇异的物理性能。发现和研究拓扑材料的奇异物性是目前凝聚态物理研究的热点之一,其潜在的应用将为科学与技术的发展带来新的重大机遇。本文主要研究了最新发现的新型硫族化合物拓扑绝缘体和第二类外尔半金属的高压行为。通过高压原位电阻、霍尔系数、交流磁化率等低温输运性能的测量,并结合同步辐射大科学装置上所进行的高压原位X射线衍射实验,对研究体系开展了深入系统的研究。这些研究结果为揭示非平庸拓扑表面态受控因素(如温度与压力),理解其拓扑性质、探索其超导电性和超导电性与晶体结构的关联性等提供了重要的实验依据。论文主要包括以下内容:第一章介绍了超导材料与拓扑材料的发现与最新的研究进展,重点介绍拓扑绝缘体、外尔半金属的基本概念和基本物性。同时也对高压技术在量子材料研究中的重要应用做了介绍。第二章介绍了本文研究所采用的金刚石对顶压砧压力产生装置与高压-低温-磁场联合测量系统等设备。同时还介绍了高压原位电阻、霍尔以及同步辐射高压X射线衍射等测量原理及方法。第三章介绍了新发现的新型硫族化合物三维拓扑绝缘体(Bi2Te2Se,Bi1.1Sb0.9Te2S)的高压研究结果。主要研究目的是探索拓扑绝缘体表面态的电导与温度和压力的依赖关系及其与体态电导的关系。研究发现尽管这两种材料的体态电导在较低的压力的作用下增大了几个数量级且随温度发生变化,但表面态电导却不随温度和压力变化,首次从压力维度上揭示了这类拓扑绝缘体的表面态导电性是独立于体态导电性的。实验结果也同时证实了拓扑绝缘体材料的拓扑表面态在一定范围的压力作用下表现出的稳定性。第四章介绍了新型拓扑绝缘体压力导致的超导电性研究。研究发现压力可诱导其发生超导转变并在较高压力范围内存在两个不同的超导相。根据XRD数据显示超导相出现在结构相变的边界。通过与碲铋矿同体系材料对比,我们首次在实验上揭示了此类拓扑绝缘体中存在普适的压力诱导的超导相图。我们的研究结果为理解其的晶体结构、拓扑性质和超导电性之间的关联提供了重要的实验依据。第五章介绍了新型第二类外尔半金属TaIrTe4的高压研究。实验发现TaIrTe4在23.8 GPa附近出现超导电性。同步辐射XRD结果表明在超导转变的压力处晶体结构出现扭曲。我们提出晶格扭曲导致了费米面的重构并诱发了超导转变。这项研究首次揭示了晶格变形、拓扑和超导电性之间的关系。
其他文献
纳米光子学是光学和纳米科学相结合的一个新兴领域,旨在实现亚波长尺度下对光的操控和研究光与纳米尺度物体的相互作用,在量子物理、光催化化学以及生物传感等领域有着广泛的应用。自由空间光子与振荡电荷耦合形成的极化激元为这一目标提供了有效的途径。散射型扫描近场光学显微镜具有突破衍射极限的纳米级空间分辨率,可以在实空间对极化激元进行探测和成像。但极化激元的深入研究需要了解它们的光谱信息,故进一步发展近场成像技
具有层状结构的化合物因其丰富的物理性质和潜在的应用价值受到诸多领域的关注,层状化合物的基本结构单元可以大致分为电中性层和带电层两大类。对于电中性层沿某个晶体学方向堆垛而成的化合物,层间相互作用一般是较弱的范德华力,在结构调控时可以采用机械解离、离子插层和化学掺杂等方法,系统地调控层间距离、层数和层间相互作用,以期调控载流子浓度和物性;对于由电正性层和电负性层沿某个晶体学方向交替堆垛而成的化合物,其
量子信息与量子计算的研究内容,是利用量子力学思想来完成信息处理的任务。在该学科的发展中,产生了量子纠缠、量子相干等独特的量子力学资源,这些资源成为量子计算、量子密码学等领域最重要的基本资源。因此,度量、量化这些资源的方法也成为一个重要的研究方向,即量子信息处理理论。其瞩目的成果包括度量纯态纠缠的冯诺依曼熵,度量两体混态纠缠的形成纠缠熵,度量相干性的量子相干,以及任意熵,量子失协等。量子多体系统是实
铜氧化物高温超导体具有奇异的正常态性质和非常规超导电性,一直是凝聚态物理研究的一个重要领域。经过三十多年的努力,高温超导机理仍然没有形成共识。角分辨光电子能谱技术(ARPES)是研究材料在动量空间中电子结构的直接和有力的工具,在铜氧化物高温超导体研究中发挥着重要作用。本论文通过运用高分辨角分辨光电子能谱技术,研究了铜氧化物高温超导体Bi2Sr2Ca Cu2O8+(Bi2212)中电子结构随掺杂的演
在强光场辐照下,凝聚态量子材料中各种粒子及准粒子(例如光子、电子、声子、等离激元等)相互耦合,能够产生高度非线性的电子和光学行为,并可能伴随着新的量子态的产生,具有重要的基础科学意义及广阔的应用前景。随着实验技术手段的不断发展,各类新奇的物理现象从凝聚态物质中不断涌现,深入理解其激发态动力学过程已经成为光学、材料科学领域的研究热点。本论文中,我们基于含时密度泛函理论,以三个研究课题为切入点,从第一
磁性斯格明子是一种具有拓扑保护的非平庸的自旋结构,其稳定性和丰富的动力学行为主要由其拓扑物理性质决定。目前在不同材料体系发现了尺寸不同的磁性斯格明子,其尺寸甚至可以小到几个纳米。单个磁性斯格明子可看成一个带有拓扑电荷的准粒子,具有粒子性,可以通过外场调控其生成、湮灭以及运动,且驱动磁性斯格明子运动所需电流密度比传统磁畴低5-6个数量级。这些特性使得磁性斯格明子可以作为信息存储单元,应用于“算盘型”
通往纳米科技革命的道路上离不开具有巨大比表面积的纳米材料,如具有形状各向异性和丰富成分配比的磁性纳米晶体材料。这些磁性纳米材料有望在高密度磁存储介质、交换耦合的磁性复合物和相关纳米器件中获得应用。本博士论文的前两个工作,则分别针对磁性单质金属和合金纳米线,研究其制备方法、生长机制和磁性行为等。研究表明表面和界面的结构不连续和自旋的重取向会给磁性纳米线带来奇异的磁性性质,这非常有利于其在自旋电子学和
自旋电子学作为一门快速发展的学科对于物理学前沿理论的开拓与信息技术的进步都具有重要的意义,而作为自旋电子器件核心结构的磁性纳米多层膜体系也因此成为了人们关注的焦点。这其中一个重要的研究领域就是关注磁性薄膜体系中受表面界面等因素调控的磁畴结构。光发射电子显微镜可以兼容多种光源实现激发过程,同时对于表面信息更为敏感,因此成为了研究薄膜体系中磁畴结构的重要技术手段。另一方面,深紫外激光技术的重大突破使得
对相与相变性质的研究一直是凝聚态物理学领域一个重要的研究课题。量子相变,即体系在绝对零度以及热力学极限下由哈密顿量中参量改变所驱动的相变,具有许多不同于传统热相变的新奇性质。量子相变点附近特有的量子临界现象,使其对于关联电子体系的低温电学性质和磁学性质至关重要。重费米子化合物作为存在局域磁矩与传导电子相互作用的一大类强关联电子系统,包含丰富的新奇量子相以及它们之间的量子相变和量子临界现象,是凝聚态
复杂系统中不同组分之间存在复杂的相互作用,组分局域性质的改变往往使得整体性质产生大的转变,网络对复杂系统的组分和组分之间的相互作用抽象为结点和结点之间的连边,是研究各种复杂系统的理想工具。渗流相变是网络演化中的一个重要现象,标志着系统中相互作用连通分支从微观到宏观的转变,渗流相变作为几何相变一般不依赖于空间的度规,是统计物理中最简单的相变,对渗流相变的研究有助于理解物理学中众多的相关现象,如导电、