基于热气溶胶灭火剂的新能源汽车电池火灾防控研究

来源 :南京理工大学 | 被引量 : 1次 | 上传用户:rovewind
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文通过了解新能源汽车电池热失控的危险性及相关预防措施,分析新能源汽车电池以短路为核心的热失控诱因,对利用热气溶胶灭火剂防止火灾扩散进行了整车电池组的实验研究,并就关键技术参数进行了数值模拟,提出最佳防控方案。对锂离子电池热失控集总化学反应动力学仿真模拟和锂离子电池燃烧实验分析,得出仿真模拟拐点温度在312℃附近,锂离子燃烧实验的拐点温度在296℃附近,因此,要在296℃之前进行锂电池热失控防控,才能有效的阻止电池燃烧过程。搭建整车电池组实验平台,并配置热气溶胶灭火剂器材,进行防止火灾扩散的实验研究。设置视频、温度监测网络,分布于各个模组。实验结果显示,在电池加热至602秒左右,电池开始出现烟雾;加热至658秒左右,电池开始出现明火;至669秒左右,热气溶胶灭火剂模块启动喷洒模式,对电池组进行灭火;至678秒左右,明火被扑灭。对各电池测量点的温度进行24小时的监测,实验中记录各监测点的最高温度分别为:487.4℃、287.8℃、87.4℃、43.1℃、26.1℃、26.7℃、25.6℃,表明实验中电池组只发生过一次燃烧。对不使用热气溶胶灭火剂进行防控的电池组实验结果表明,其中一块电池喷火后,热量扩散导致其它电池组出现连续喷射着火,说明热气溶胶灭火剂有效。以机械滥用、电滥用、热滥用导致的内短路分析为基础,使用事故树分析得到导致新能源汽车电池热失控的8个基本事件。通过结构重要度分析得出通过防止锂离子电池内部热量积累(X8),是防治锂离子电池自燃最有效的方式之一。热气溶胶灭火剂可在其中一块电池失火情况下,防止其它锂离子电池热失控温度达到临界温度T0,是可行的防治锂电池火灾方式。
其他文献
随着我国的环境污染的日益严重和新能源车辆技术的快速发展,纯电动车辆成为未来节能与环保汽车发展的重要方向。与燃油车辆不同,纯电动车辆可以通过驱动电机参与制动,将车辆在制动过程中消耗的动能进行制动能量回收,是提高车辆能量利用率和增加续驶里程的重要手段。本文以一款后驱纯电动轻型卡车为对象开展制动能量回收系统的分层控制设计,并进行了仿真以及台架测试等相关研究。本文的主要研究内容如下:首先,提出一种基于电控
固体火箭冲压发动机将冲压技术与固体火箭技术相结合,不仅结构简单、工作可靠,还具有更高的比冲。然而,导弹在机动飞行时,需要对其空燃比进行调控以适应复杂的飞行工况变化,因此变流量技术成为研究的重点。目前,地面模拟实验是固冲发动机的变流量实验研究主要手段之一,而直连式模拟实验因其简单性和经济性而被广泛使用。本文针对直连实验系统进气道流量调节问题,通过控制系统设计、算法仿真、数值模拟、实验验证等几个方面展
房屋出现结构问题的第一个信号便是其结构构件出现裂缝,这是一个相当普遍的现象,也是一项长期困扰工程技术人员的难题。对砌体结构房屋进行结构健康安全监测,首要的任务就是对产生的裂缝进行调查和研究,本文的主要研究工作如下:(1)使用Mask-RCNN对大量裂缝图像进行训练,标注裂缝的精确位置以及形态走向,训练完成后验证其识别精度,并和传统的形态学图像处理技术进行图像识别效果对比。(2)在python中将M
随着现代无线通信技术的快速发展,射频前端系统不断向高性能、小型化、低成本、高密度集成发展趋势迈进。而滤波器、功分器、巴伦等无源器件作为射频前端系统重要的组成部分,会对系统的工作性能产生重要的影响。然而现有的器件集成方式往往是将其直接级联于射频前端,该方式不仅没有减少无源器件的数量,相反还引入了不必要的损耗,所以如何提高这些无源器件的集成度对射频前端系统的高性能设计具有重要的意义。另一方面,平衡电路
致病细菌给人们的生活带来诸多不便,而且游离菌容易聚集在活性组织或材料表面进一步发展为成熟的生物膜。大多数难以完全清除的细菌菌落与细菌生物膜的形成有关。生物膜内部除了细菌之外,还含有大量细菌分泌的胞外聚合物,使得传统抗生素及抗菌剂难以渗透到生物膜内部,大大增加了生物膜的清除难度。随着纳米抗菌材料的不断发展,刺激响应型抗菌纳米材料引起了学者的广泛关注。本文分别以ZIF-8和Fe3O4为载体,引入抗菌组
分布式驱动电动汽车结构简单、操纵方便,是电动汽车发挥其最大潜力的最优形式,而底层扭矩与防滑控制是其目前发展需要突破的关键技术之一。现有针对分布式驱动电动汽车的防滑控制策略在适用性和实用性上存有不足,本文充分发挥分布式电动汽车的结构特点,从电机能量分配角度提出并验证了一种新型防滑控制策略。首先,本文在MATLAB/Simulink中建立了车辆模型和永磁同步电机控制模型,主要包括一轮车辆模型、轮胎模型
糖尿病是危害人类健康的一大杀手,目前在医学上无具体的方法可以根治;血糖的监测是糖尿病综合治疗中不可缺少的重要环节。市面上的商用血糖检测仪不仅存在血液感染的风险,使患者病情加重,还会令患者因为疼痛产生恐慌感而抵触监测,为血糖采集工作增加了负担。近年来,无创血糖技术应运而生。该技术既能满足医生专业辅助治疗的需求,更能缓解患者的恐慌心理,推进治疗。其中基于射频微波理论的无创血糖监测技术成为新的研究热点。
铁素体(F)-马氏体(M)双相钢由于高加工硬化率、良好的强塑性匹配性能和优异的抗冲击性能被广泛用于汽车领域。近年来,研究者们为进一步提高双相钢的综合机械性能做出了巨大的努力。晶粒细化是一种最有效的强化方式,因此研究者们通常通过细化双相钢的微观组织结构制备超细晶双相钢(UFG-DP),以期获得双相钢的高强性能。目前钢铁材料工作者已经提出了许多用于制备UFG-DP钢的加工路线,包括剧烈塑性变形(SPD
作为微波系统的基本无源组件,耦合功分电路广泛应用于混频器、阵列天线的馈电网路以及放大器设计中,影响着整个系统的性能。为适应近年来微波电路高集成的发展趋势,耦合功分电路在保证性能的同时,亟待实现小型化的设计。电路系统设计趋于密集紧凑,对于具备高稳定性以及良好抗干扰能力的多端口平衡电路也提出了紧迫的需求。此外,现代通信系统的发展伴随着系统工作频率的提升,利用间隙波导等新型传输结构来提高无源电路在毫米波
由于我国轨道交通的迅猛发展,地铁的使用频率不断增加,地铁的行车安全性越来越重要。随着地铁运行速度的提高,地铁行驶条件越来越复杂,路况越发恶劣,车体产生疲劳破坏的概率大大增加。因此在地铁车体设计过程中,结构疲劳寿命问题已成为首要解决的难题。本文以A型地铁铝合金车体为研究对象,对车体关键部位疲劳寿命开展了分析研究。首先进行了车体海量网格划分策略与技术的研究,对比了三维网格划分方法与壳体网格划分方法对复