高泛化性的深度伪造检测算法研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:venus521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度伪造是利用深度学习强大的拟合能力来生成逼真人脸的一种技术。目前已经有着大量使用此类算法生成的恶意视频在网络中传播,对个人隐私和社会稳定造成严重威胁。也因此,深度伪造检测成为当前亟待解决的问题。目前伪造人脸检测的相关研究已经能够在各个数据集上表现出足够高的精度,但在泛化性仍有不足。不同的伪造算法所留下的痕迹各不相同,未知数据分布更是增加了检测难度。现有很多方法都是针对于某种特定伪造算法所产生的特定的痕迹与失真来进行分析与检测,这一类带有目标性的检测算法在检测其他算法生成的伪造视频时,精度通常会发生大幅度下降。因此,我们需要研究能够应对各种伪造算法的检测技术。针对上述问题,本文研究深度伪造检测的泛化性问题,在保证检测精度的同时能够推广应用到不同算法生成的伪造人脸视频上。考虑模型泛化问题的多领域泛化和单领域泛化场景,本文设计了两种具体方案,具体包括:(1)针对多领域泛化问题,提出基于共性特征学习的深度伪造检测方案。现有深度伪造方案多种多样,然而它们不可避免地会在伪造的视频中留下某些相似的痕迹,诸如边界异常、PRNU噪声、生物信号等。本方案试图从多类伪造数据中提取共性特征,从而在未知数据集中取得较好的泛化性。首先训练特定伪造特征提取器,学习各类伪造数据的特定分布;然后在特定伪造特征提取器的协助下训练共性伪造特征提取器,利用对抗学习的思想学习特定伪造特征中存在的共性特征,从而增强对未知伪造的检测能力。实验结果表明,共性学习策略有助于提高检测算法的泛化性能,检测结果优于多项现有先进研究成果;(2)针对单领域泛化问题,提出基于单域数据扩充的深度伪造检测方案。方案一通过多种伪造数据泛化至其他类别的伪造数据。然而现实情况下伪造数据的获取并不容易。为此,本方案考虑泛化问题中最难的一种情况。在只拥有真实数据的情况下,模拟多样化的伪造数据,从而泛化到多种未知伪造数据中。方案将未知伪造数据的属性规约为伪造方案的差异性和图像风格的差异性,并针对性地提出通用伪造生成模块与对抗风格转换模块。实验结果表明,方案能够模拟多样化的伪造数据,泛化效果超越多个现有方案。
其他文献
群签名技术是签名技术在群组环境中的扩展,该技术可以在实现身份认证的同时确保用户的隐私保护,具备良好的实用性。动态群签名技术具备群组成员动态更新、匿名性、不可陷害性和可追踪性等特点,适用于车联网、电子钱包、电子投票和云数据审计等环境。然而,一方面,现存的动态群签名方案都有一个隐含的假设,即所有群组成员的身份是公开的。这使得现存方案可能泄露用户的隐私信息,无法提供完备的隐私保护。另一方面,现存的支持时
学位
高光谱遥感将被测地物的空间信息与极其丰富的光谱信息结合为一体,极大地拓宽了人类的视野,增强了探测物质属性的能力。在多种实际应用中,信息提取与处理的精度很大程度依赖于所采集的高光谱图像质量。然而,在信号采样和数字成像的过程中,高光谱图像会不可避免地受多种类型混合噪声污染而退化。这种退化会极大降低后续应用的精度与效率。近年,低秩表示方法在图像恢复问题上获得了高度关注。但是,由于高光谱图像数据维度高、冗
学位
目的 分析个性化健康教育应用于老年高血压患者中的效果。方法 选取2019年7月至2021年7月到我院诊治的40例老年高血压患者,通过计算机抽签方法设为观察组和对照组,每组各20例,其中对照组患者进行标准化护理方案,观察组采用标准化护理联合个性化健康教育护理方案,对比两组患者干预后的血压水平表现情况和治疗效果。结果 通过不同的干预措施后,观察组患者的血压水平低于对照组(P <0.05);观察组治疗总
期刊
医疗保健5.0时代,智能设备被广泛使用。实现心律失常的自动诊断可以促进医疗保健5.0的发展并提高人们的生活质量。越来越多的智能设备被引入到医疗保健领域,这些智能设备可以从传感数据(例如,心电图(Electro Cardio Gram,ECG))中提取特征,以帮助监测和诊断疾病。然而,心跳的智能分类并不容易实施。不同心跳之间的差别较小以及罕见类型的心跳数据的缺乏使得心跳的自动分类十分困难。为实现高准
学位
随着云计算不断发展成熟,越来越多的用户将本地私有数据外包给云服务器计算。与此同时,云端数据被恶意篡改,用户隐私泄露等云计算安全问题也日益严重。隐私集合交集协议在实现云外包集合交集计算的同时能保护用户隐私,一定程度上为促进云安全计算提供了可靠保障。然而,现有的隐私集合交集协议致力于防止用户隐私泄露,忽略了云计算结果的可验证性和抵抗共谋攻击等问题。一方面,云服务器可能为了节约计算资源或谋取经济利益等目
学位
信息隐藏是一种将秘密信息以不可见的形式隐藏到多媒体载体中的技术。通过使用这项技术,发送者和接受者可以在通信的同时不引起第三方怀疑。传统的信息隐藏方法是根据秘密信息直接修改多媒体载体,对载体的修改必然会导致载体出现不同程度的失真。随着隐写分析技术的快速发展,隐写分析器能够捕获到越来越细微的载体失真,这直接威胁到了传统信息隐藏方法的安全性。为了从根本上保证信息隐藏技术的安全性,研究人员提出了构造式信息
学位
传统机器学习或模式识别问题通常假设:1)训练数据和测试数据服从相同分布;2)训练数据充足且有标注。这样的假设过于理想且在实际问题中很难成立,为了克服数据分布不同且无标记或者少标记的问题,域适应作为新的机器学习范式被提出。截至目前,已有大量域适应方法被提出,但域适应的场景丰富多变且域间域内关系错综复杂,现有方法并不能很好地根据域适应的场景设置挖掘其特有的先验知识、领域关系等。为此,本文针对无监督域适
学位
隐写术和隐写分析是当前信息隐藏领域中重要研究热点。隐写术的滥用造成不少的安全隐患,如:商业犯罪分子利用隐写技术完成隐蔽通信来实现信息盗取。图像隐写术是一种通过修改数字图像的复杂区域来嵌入秘密信息以达到隐蔽通信目的的技术,但由于隐写术的特殊性导致其可能被用于非法领域,因此研究隐写分析技术对维护信息安全具备重要的研究意义和实用价值。隐写分析技术按照其技术基础分为基于人工特征的隐写分析方法和深度隐写分析
学位
分类任务是机器学习中一项重要的分支,分类算法利用样本中的特征信息将实例进行类别的划分。但是,由于特征数量的急剧增长,“维度灾难”问题严重影响了分类算法的性能。特征选择技术通过对数据集中不相关或冗余的特征进行剔除,能够很好地解决“维度灾难”问题。特征选择可以被视为组合优化问题,即从特征全集中挑选出合适的特征组合形成特征子集。遗传算法作为进化算法中最具代表性的经典算法之一,全局搜索能力突出,特别是针对
学位
在过去的20年中,核方法已成功用于解决许多机器学习和模式识别问题。众所周知,核方法的性能高度依赖于核参数的选择。传统的模型选择在交叉验证的框架下基于格子、随机或者手动搜索实现。然而这些方法都是在离散的参数空间中选择有限个候选核参数,然后多次训练模型,这需要很高的计算成本。尽管研究者们已经提出了非线性解路径算法用于在连续的参数空间中选取核参数,但这些方法仍不能保证搜索到整个参数空间内最优的核参数值。
学位