【摘 要】
:
具有强近红外(NIR)吸收的窄带隙共轭聚合物在光电、传感、通讯及医疗领域具有广阔的应用前景,然而受限于受体单元的发展,广泛用于构筑窄带隙共轭聚合物的给体-受体(D-A)策略难以实现聚合物在近红外二区(NIR-Ⅱ)的强吸收。研究表明,提高聚合物骨架的醌式特征是另一种降低聚合物带隙的有效策略。基于此,本论文设计合成了以噻吩取代吡咯并吡咯二酮(DPP)为核、吲哚酮及其衍生物为端基的缺电子醌式单元,并以此
论文部分内容阅读
具有强近红外(NIR)吸收的窄带隙共轭聚合物在光电、传感、通讯及医疗领域具有广阔的应用前景,然而受限于受体单元的发展,广泛用于构筑窄带隙共轭聚合物的给体-受体(D-A)策略难以实现聚合物在近红外二区(NIR-Ⅱ)的强吸收。研究表明,提高聚合物骨架的醌式特征是另一种降低聚合物带隙的有效策略。基于此,本论文设计合成了以噻吩取代吡咯并吡咯二酮(DPP)为核、吲哚酮及其衍生物为端基的缺电子醌式单元,并以此构筑了系列窄带隙共轭聚合物,详细研究了聚合物的理化性质和有机薄膜晶体管(OTFTs)器件性能。主要结论如下:1、通过靛红的选择性亲核加成、脱羟基和氧化反应合成了DPP醌式化合物,并以之为受体单元,采用Stille缩聚合成了聚合物PQ-BT、PQ-FBT、PQ-Me OBT、PFQ-BT、PFQ-FBT和PFQ-Me OBT。所得聚合物均在NIR-Ⅱ区具有强吸收,光学带隙小于1.05 e V,并表现出良好的NIR-Ⅱ区光热转换性质。所有聚合物均呈现双极传输行为,在金电极和聚合物之间引入界面修饰层三氧化钼(Mo O3)和乙氧基化的聚乙烯亚胺(PEIE),可分别测得可信的空穴和电子迁移率,最高空穴和电子迁移率分别为0.20和0.15 cm~2V-1s-1。2、基于氟代吲哚酮封端的DPP醌式化合物和多卤代噻吩衍生物,采用直接芳基化缩聚(DAr P)合成了聚合物PFQ-4F2T、PFQ-4Cl2T、PFQ-4FTVT和PFQ-4Cl TVT。其中,PFQ-4F2T在NIR-II区具有强吸收,最大吸收峰值为1020nm,光学带隙为1.08 e V。基于四个聚合物的OTFTs器件经PEIE修饰后均呈现纯n型传输特性,其中,PFQ-4FTVT的电子迁移率最高,达到0.21 cm~2 V-1 s-1。
其他文献
近年来,碳点(Carbon dots,CDs)作为一种新兴的碳基发光材料,因其易于制备易于修饰,具有优秀的生物相容性以及优异的光学性质在各个领域中都得到了广泛的应用。CDs的研究经过多年的开发取得了不小的成果,但是仍存在以下挑战:(1)目前关于CDs的荧光性能被大量报道,关于室温磷光(RTP)发光仍有待研究;(2)目前报道的CDs的RTP性能主要通过与聚合物基质复合的方式来实现,这极大的限制了 C
随着人类社会对公共卫生和医疗健康重视程度的与日俱增,具有抗菌功能医疗器械的需求越来越多。聚氨酯(PU)在医疗器械行业应用十分广泛,在其中引入亲水基团获得的水性聚氨酯乳液(WPU)不仅保留了聚氨酯的特性,而且实现了有机挥发性溶剂(VOCs)的零排放,是赋予表面抗菌功能的理想基体。本论文以构建医疗器械表面水性抗菌涂层为目的,合成了壳聚糖双胍盐酸盐(CSGH)和二硫化钼量子点(MoS2 QDs),再通过
分子间氢键的强弱严重影响氢键结合的超分子聚合物水凝胶的凝胶化和流变行为,提供了一种调节水凝胶理化性质的途径,以满足特定的生物医学应用。本文研究了N-丙烯酰基甘氨酰胺(NAGA)侧链上的双酰胺基序间的间隔基团变化对聚合物网络间氢键作用的影响。设计并合成了一种与NAGA结构相似的新型单体,即在双酰胺基序间引入一个额外的亚甲基,将这种新单体命名为N-丙烯酰基丙氨酰胺(NAAA)。NAAA在水溶液中可以通
碳纳米管纤维由于其优异的性能被研究和应用于导线与电缆、柔性能源器件以及复合材料等领域,具有广阔的应用前景。要实现碳纳米管纤维的诸多电力电子应用,必不可少的关键步骤是要实现碳纳米管纤维与电路中其它带电部件之间的低电阻、高强度的可靠连接,而传统的连接方法均不适用。广泛用于微米和纳米级金属增材制造的弯液面限制的电化学沉积方法可以在各种位置沉积各种形状的金属,且沉积不会感染碳纳米管纤维的内部结构,因此被用
固体氧化物燃料电池(SOFC)因其能量转换效率高、工作噪音小且无污染的优点,有望在未来得到广泛应用。ZrO2陶瓷是该电池中电极及电解质的基本构成材料,但其连接及高温稳定性问题一直阻碍着SOFC的推广运用。本课题采用Ag-Cu O-Al2Ti O5复合钎料,通过空气反应钎焊(RAB)方法对ZrO2自身、ZrO2与GH3536、ZrO2与Mn Co涂层改性的SUS430进行连接,分析了不同Al2Ti
锂离子电池因具有高能量密度和长循环寿命的优势被广泛应用在便携式电子设备、电动汽车和智能电网领域。有机正极材料具有比容量高、环境友好、结构可设计性强和反应位点多等优点,因此能够成为新一代电极材料。本论文围绕双极型萘酰亚胺基有机正极材料,研究内容主要包括以下两个方面:(1)通过乌尔曼反应、还原反应和脱水缩合反应合成了双极型N,N’-双-(4-咔唑-1-苯基)-1,4,5,8-萘酰亚胺单体,利用原位电化
磁性聚离子液体由于其优异的结构设计性和加工性等而备受学者的关注,其磁性来源通常是高自旋的FeCl4-等阴离子。磁性聚离子液体由于磁性中心排列规整性较差且距离较远,显示出较弱的顺磁性,较弱的顺磁性影响了磁性聚离子液体的应用。刷状聚合物是一种具有高侧链接枝密度的聚合物,因此刷状的磁性聚离子液体具有高接枝密度的侧链磁性基团和易自组装的结构优势,可能导致其磁性单元排列更加规整从而显示出优异的磁性能,自组装
锂/钾金属被认为是下一代有希望的高能量密度电池负极,然而在电池循环过程中,锂/钾金属负极存在严重的枝晶生长以及大的体积变化,导致电池库伦效率低、循环寿命短。引入具有亲锂/钾性的三维多孔碳基集流体是缓解以上问题的有效措施,然而这类碳基集流体通常制备过程复杂,而且缺乏柔性。本论文通过简单的静电纺丝和热处理,制备了集优异柔性、多孔、亲锂/钾性于一体的三维碳基集流体,研究了其在锂/钾金属负极中的应用。主要
316H不锈钢是在316系列钢的基础上针对更高服役温度需求而开发出的一种新型、具有更高含碳量的奥氏体不锈钢,作为第四代核反应堆结构部件的候选材料。核反应堆机组在服役过程中,由于机组频繁的功率变动和启停过程带来的温度波动,会使得核电机组中的部分结构部件处于长时间的低周疲劳行为中,容易造成材料的疲劳行为失效。因此研究316H钢在高温下的低周疲劳行为及微观组织演变过程,有利于316H钢的性能了解和应用,
为抑制飞机、高铁等物体表面的覆冰问题,可利用疏冰原理构建防覆冰涂层。聚硅氧烷材料表面能低,与冰的粘附强度小,是制备防覆冰涂层的重要原料之一,但其力学性能以及环境耐受性较差,引入物理化学性能稳定、具备自修复能力的聚脲,弥补聚硅氧烷的缺陷。本文利用聚硅氧烷与二异氰酸酯合成聚二甲基硅氧烷聚脲预聚物(PDMSPU),分别添加惰性硅油、1,3,5-三(4-氨基苯氧基)苯(TAPOB)交联剂以及Si O2纳米