论文部分内容阅读
道岔是铁路轨道结构的关键部件,在我国绝大多数的铁路线路上,高锰钢材质道岔是合理的选择。关于高锰钢具有异常高的加工硬化能力的原因,国内外学者对此开展了广泛的研究,但迄今为止尚没有统一的、全面的总括性结论。采用异步轧制技术,使高锰钢预充分加工硬化,采用金相显微镜观察其显微组织和组织演变,并与传统加工工艺及常规轧制所得结果进行比较、分析;利用电子射线衍射对试样进行物相分析,对高锰钢的晶体结构进行标定,确定其晶胞参数及晶格结构;通过高分辨透射电子显微镜对试样进行结构分析,观察试样位错、孪晶密度以及位错和孪晶的分布存在状况。通过以上实验分析结果在高锰钢耐磨性能的基础上对它的加工硬化机理进行研究,验证形变诱发马氏体相变硬化说、孪晶硬化说、位错硬化说、层错硬化说等假设的合理性。研究表明,高锰钢在使用条件下为面心立方奥氏体,{111}面为其主要的滑移面,<111>为主要的滑移方向,滑移系比较多,故有很好的塑性和韧性;从不同形变量下轧制高锰钢中的典型组织可以看出,在较小形变量情况下,组织中开始出现很多平直的变形带以及孪生变形,位错组态表现为平直的条带;随着形变量的增加,组织中孪晶的数量明显增多,形变量继续增加,孪晶密度明显增加,同时,孪晶之间互相穿过形变交叉孪晶,在交叉部位发生扭折,当形变量达到一定程度后,组织中孪晶的数量增加速率开始下降,孪晶内出现少量的次生孪晶,同时,变形带产生弯曲或滑移台阶,组织内晶粒发生严重的畸变甚至断裂细化,晶粒细化的同时出现了大量高密度位错缠结和形变孪晶。另外,研究中发现,高锰钢经过不同压下率轧制后,其晶粒尺寸可细化至纳米量级。高锰钢表面纳米化机制与高密度的位错缠结和高密度的位错反应和重组,多重孪晶的相互交割作用以及孪晶和位错的交互作用有关。这项研究结果将对研究高锰钢如何提高其耐磨性起到非常有益的作用,有着重要的理论意义和实用价值。图40幅;表6个;参72篇。