【摘 要】
:
炼胶是橡胶制品加工制造的第一道工序,在炼胶过程中为了保证设备的润滑和密封,需要连续注入适量的润滑油和工艺油。部分溢出的油料由于混有杂质无法再重新利用而成为废油,这部分废油如果得不到妥善处理会对环境造成污染,同时也使企业的生产成本居高不下。目前多数橡胶厂针对此类废油的处理方式为静置沉降回收上层清油,剩余无法回收的油液则进行焚烧裂解,这种处理方法不仅回收效率低,而且造成能源的巨大浪费和环境破坏,因此研
论文部分内容阅读
炼胶是橡胶制品加工制造的第一道工序,在炼胶过程中为了保证设备的润滑和密封,需要连续注入适量的润滑油和工艺油。部分溢出的油料由于混有杂质无法再重新利用而成为废油,这部分废油如果得不到妥善处理会对环境造成污染,同时也使企业的生产成本居高不下。目前多数橡胶厂针对此类废油的处理方式为静置沉降回收上层清油,剩余无法回收的油液则进行焚烧裂解,这种处理方法不仅回收效率低,而且造成能源的巨大浪费和环境破坏,因此研究安全、高效的回收处理工艺及装置是非常必要的。本文分析了橡胶厂炼胶过程中废油的来源及污染物的组分,阐述了
其他文献
聚氨酯硬泡因其良好的保温性能被广泛的应用于管道保温、建筑保温、冷库建造和冷链运输等各个领域。然而随着人类对环保的日益重视和化石资源的大量消耗带来的能源问题,利用木质生物质资源开发环境友好的生物质基聚氨酯泡沫受到了人们的广泛关注。本文利用生物质液化技术将木质生物质转化为生物质基多元醇,进而成功制备生物质基聚氨酯泡沫,研究生物质和扩链剂1,4-丁二醇的加入对聚氨酯泡沫微相分离程度的影响。以玉米秸秆为原
传统化石能源的过度消耗及其造成的严重环境污染激起了人们对于开发新型可持续清洁能源的研究兴趣。氢气是一种有潜力的未来可持续清洁能源。近年来,电解水作为一种获取氢能源的强有力手段被人们广泛研究,高效的电化学催化剂可以大幅度提升电解水制氢的效率和能源转换率。Pt基催化剂是目前最有效的用于析氢反应(HER)的电催化剂,但是低储量和高成本限制了它们的广泛应用。过渡金属钴具有资源丰富,价格低廉,其单质及化合物
纤维素纳米晶来源于自然界中储量巨大的纤维素,通过对其进一步加工处理制得。由于自身具有的良好亲水性和高分子量,对纤维素纳米晶进行化学修饰后,可以在原有自身性能上赋予其新的功能。本文基于纤维素纳米晶的自身特性,将其与高级饱和脂肪酸接枝改性,制备出具有一定疏水性能的纤维素纳米晶改性产物,并对改性纤维素纳米晶的结构、表面活性及应用进行了研究。以改性纤维素纳米晶作为非离子型乳化剂,制备了苯丙乳液和水包油型大
槐糖脂是一种由非致病菌球拟假丝酵母(Starmerella bombicola O-13-1)利用可再生资源生产的糖脂类生物表面活性剂。是目前国际范围内产量最高的生物表面活性剂。由于具有良好的润湿性、发泡性、抗肿瘤性、抑菌性、抗病毒性、无毒性、可生物降解等优良特性,槐糖脂目前已被广泛应用于农业、食品、生物医学、生物修复、石油开采、化妆品等领域,然而因为其发酵成本高、发酵效率低、产物分离困难等因素,
电渗析是一种有效的分离氨基酸与盐的技术。然而目前商业离子交换膜选择性不强,通量较大,为了提高氨基酸与盐的分离效果,使氨基酸的迁移损失率降低,对离子交换膜进行改性,提高其选择透过性是一种有效手段。本课题通过界面聚合法引入四苯基卟啉四磺酸,成功制备出了新型卟啉复合阳离子交换膜(TFC-CEM),并对其进行物理化学性能表征。同时探究了在电渗析过程中对氨基酸与盐的分离效果。对制备的卟啉TFC-CEM进行表
随着社会工业化发展的持续推进,有机废水污染问题的严峻性得到了人们的广泛关注。氯酚类化合物是一类应用广泛的化合物,常用于农药生产过程中。氯酚类化合物毒性极强,较低的浓度即可对生物产生严重的毒害作用。类水滑石材料由于其特殊的结构,对氯酚类污染物有着一定的去除效果,因此,研究新型水滑石复合材料对氯酚类的去除有着一定的环境效益。本研究针对水滑石的特殊结构,采用低饱和共沉淀法制备了Co-Ni-Fe类水滑石(
水体重金属污染仍是当今全球面临的关键性问题之一。选择高效、经济且环保的重金属污染治理技术尤为重要。近年来,采用生物炭进行吸附因成本低、去除率高且原材料来源广泛,而成为一种具有广阔发展前景的技术方法之一。虾壳等甲壳类动物壳是制备富钙生物炭的优良前体。研究发现,原始富钙生物炭对重金属的吸附性能有待进一步提高。因此,可采用多重改性方法促进其在重金属吸附领域的应用与发展。1、本论文以虾壳作为富钙生物炭制备
端羟基聚丁二烯(HTPB)是液体橡胶中最具有代表性的产品品种之一,在航天推进剂、轮胎、涂料、粘合剂、橡胶跑道等广泛领域均有应用。异戊二烯与丁二烯同为二烯烃化合物,也有着巨大的开发潜力空间,随着近年来异戊二烯产业的不断提升,开展新型聚异戊二烯液体橡胶研究已成必然之势。本研究采用阴离子法设计合成了四官能度星型端羟基聚异戊二烯(4HTPI-Si)液体橡胶,其既具有液体橡胶的常温液态特性和可化学热固化性,
TPU具有高抗拉强度和耐磨性,但易燃性限制了其更为广泛的应用。聚磷酸铵(APP)已经被证实对TPU具有较好的阻燃效果,但仍然存在阻燃抑烟效率不高、与TPU基体的相容性较差、恶化TPU复合材料机械性能的问题。通过协同阻燃技术进一步提高APP对TPU的阻燃抑烟效率,是火安全材料领域的重要研究内容之一。本文针对以上问题,合成了柠檬酸镍(NC)、柠檬酸钴(Co C)、柠檬酸铜(Cu C)和柠檬酸钇(YC)
本文分别制备了酚醛树脂空心球(PHM)、碳化酚醛树脂空心球(CPHM)、碳化的酸化酚醛树脂空心球(CAPHM)、钼酸铵包覆酸化酚醛树脂空心球(AMPHM)、氧化钼改性酚醛树脂空心球(MOPHM)和硅酸钠包覆酚醛树脂空心球(SSMPHM)阻燃TPU复合材料,采用锥形量热仪(CCT)、微燃烧量热仪(MCC)、热重-红外联用(TG-IR)、扫描电镜-能谱分析(SEM-EDS)和X射线光电子能谱(XPS)