论文部分内容阅读
与硅相比,第三代半导体碳化硅拥有极好的性质,比如高热导率,高电子迁移率等,同时也是唯一一种能够通过热氧化过程生长氧化膜的化合物半导体。然而直接通过热氧化过程制作的4H-SiC MOS器件有着界面缺陷过多,氧化膜可靠性欠佳的问题。其原因在于热氧化生成的氧化膜中存在着许多缺陷,这些缺陷导致氧化膜击穿所需要的激活能减小,降低了氧化膜电应力的承受能力。因此减少氧化膜中的缺陷,提高氧化膜可靠性就成为了SiC MOSFET研究领域的关键问题。本文使用电子回旋共振(ECR)氮等离子体处理工艺对通过热氧化过程形成的氧化膜进行处理,制作成为4H-SiC MOS结构。通过I-V测试发现,通过ECR氮等离子体处理工艺,SiO2/4H-SiC的势垒高度有效地提高至2.67 eV,接近理论值2.7 eV,击穿场强达到了10.90 MV/cm。采用阶跃电流经时击穿(SCTDDB)方法研究了ECR氮等离子体处理对4H-SiC MOS氧化膜经时击穿(TDDB)行为的影响。实验发现,ECR氮等离子体能够有效提高氧化膜的击穿电荷量与寿命,与未经过当等离子体处理的样品相比,经过处理的样品击穿电荷量与寿命分别提高了10-100倍和3-4个数量级。同时,本文还发现经过ECR氮等离子体处理后,样品的耐受电场强度的能力有所提高,而且样品的均一性有了很大提高,很小场强下就会被击穿的样品被消除,样品的击穿场强分布在一个较窄的范围内。为了解释ECR氮等离子体处理对于4H-SiC MOS样品TDDB行为的影响,本文使用了X射线光电子能谱(XPS)测试手段对4H-SiC MOS样品的物理性质进行分析,结果表明,ECR氮等离子体处理能够有效消除由于不完全氧化而产生的缺陷,钝化界面,因此提高了氧化膜击穿所需要的激活能,从而提高了样品击穿电荷量与寿命。以上结果表明,ECR氮等离子体处理能够有效降低4H-SiC MOS栅氧化膜中的缺陷,提高样品的击穿电荷量与寿命,提高样品的均一性以及对电场应力的耐受能力,改善了4H-SiC MOS栅氧化膜的可靠性。