论文部分内容阅读
能源短缺和生态环境恶化是21世纪人类社会面临的两大问题。与传统内燃机相比,普通天然气发动机存在通气效率低,动力不足,冷启动困难,HC排放量高等缺点,因此天然气发动机的推广应用受到限制。而缸内油-气高压直喷技术,可以实现缸内天然气扩散燃烧,保持天然气发动机动力性与经济性,同时可以减少有害排放,因此具有广阔的应用前景。本论文针对油-气高压直喷发动机的形成机理和燃烧特性进行了基础研究,揭示了气缸内混合物形成和点火燃烧的本质,丰富的燃烧机理,直接改善油-气高压直喷发动机燃油经济性和减少排放具有重要的理论意义和工程实用价值。
本文研究了瞬态气体射流的分区结构及缸内气体射流的特性,对多维流动模型、“气态微粒”喷射模型、现象学与多维混合模型进行了研究与比较,前段半球非稳定涡区和后端准稳定喷流区分别采用现象学模型和多维混合模型进行建模。将建立的引燃柴油喷射模型和天然气喷射模型相结合,组建为油-气缸内高压喷射模型,实现对柴油-天然气喷射压力、喷射定时以及喷射流量等特征参数的综合模拟分析。通过实验研究方法,对定容燃烧弹进行了柴油和天然气高压喷射射流特性的实验研究。采用形态学和图像处理方法研究了气缸内直喷天然气的射流穿透距离,射流锥角和射流量。验证了随时间变化的规律,并验证了已建立的柴油和天然气的喷射模型。
本文分析了甲烷与正庚烷燃烧的化学反应机理的组成及主要反应路径。采用主路径分析法和主要组分分析法,提出了一种新的柴油/天然气双燃料简化模型。该模型包含了112个组分和658个基本组分。本文基于多维数值模拟软件KIVA-3V,建立油-气高压直喷发动机流动以及燃烧的三维数值模拟的仿真平台:平台嵌入了PaSR湍流燃烧模型,考虑了湍流对化学反应的影响,可实现多维模型与详细化学反应动力学模型的耦合;引入NSGA-Ⅱ,对发动机的三个喷射参数进行全面系统的优化,协调三个目标之间此消彼长的关系。基于开发的油-气高压直喷发动机缸内燃烧多维模拟计算平台,对发动机的混合气形成以及缸内燃烧特性开展了仿真计算研究,主要计算结论如下:
1.天然气缸内高压直喷可使缸内速度场显著增大,湍动能增强,湍动能可达15000m2/s2以上,湍流强度和湍动能的增强可以强化缸内燃料的混合过程,从而加快发动机缸内天然气燃料的燃烧速度。
2.发动机气缸内的峰值压力和温度随着天然气替代率的增加而降低,而天然气替代率的高能量保持较高的最终温度。天然气的替代率越高。NO形成率越高,NO形成量越高。
3.油-气高压直喷发动机掺氢后,气体燃料中掺氢比的变化对发动机点火和燃烧过程影响不大。随着氢混合比的增加,天然气的放热提前。
4.利用NSGA-Ⅱ优化方法,对引燃柴油喷油时间、天然气喷射与柴油喷射的时间间隔、柴油喷嘴孔与天然气喷嘴孔的周向偏角等三个对发动机性能有重要影响的主要喷油参数进行了优化,经过连续多代的逐步进化,协调三个目标之间此消彼长难以协调的关系,三项目标均取得了较为明显的改善,优化参数可同时降低双燃料发动机中的氮氧化物和碳烟。此外,当柴油喷射和气体喷射之间的喷射间隔为1.38℃A时,达到最低ISFC。
本文研究了瞬态气体射流的分区结构及缸内气体射流的特性,对多维流动模型、“气态微粒”喷射模型、现象学与多维混合模型进行了研究与比较,前段半球非稳定涡区和后端准稳定喷流区分别采用现象学模型和多维混合模型进行建模。将建立的引燃柴油喷射模型和天然气喷射模型相结合,组建为油-气缸内高压喷射模型,实现对柴油-天然气喷射压力、喷射定时以及喷射流量等特征参数的综合模拟分析。通过实验研究方法,对定容燃烧弹进行了柴油和天然气高压喷射射流特性的实验研究。采用形态学和图像处理方法研究了气缸内直喷天然气的射流穿透距离,射流锥角和射流量。验证了随时间变化的规律,并验证了已建立的柴油和天然气的喷射模型。
本文分析了甲烷与正庚烷燃烧的化学反应机理的组成及主要反应路径。采用主路径分析法和主要组分分析法,提出了一种新的柴油/天然气双燃料简化模型。该模型包含了112个组分和658个基本组分。本文基于多维数值模拟软件KIVA-3V,建立油-气高压直喷发动机流动以及燃烧的三维数值模拟的仿真平台:平台嵌入了PaSR湍流燃烧模型,考虑了湍流对化学反应的影响,可实现多维模型与详细化学反应动力学模型的耦合;引入NSGA-Ⅱ,对发动机的三个喷射参数进行全面系统的优化,协调三个目标之间此消彼长的关系。基于开发的油-气高压直喷发动机缸内燃烧多维模拟计算平台,对发动机的混合气形成以及缸内燃烧特性开展了仿真计算研究,主要计算结论如下:
1.天然气缸内高压直喷可使缸内速度场显著增大,湍动能增强,湍动能可达15000m2/s2以上,湍流强度和湍动能的增强可以强化缸内燃料的混合过程,从而加快发动机缸内天然气燃料的燃烧速度。
2.发动机气缸内的峰值压力和温度随着天然气替代率的增加而降低,而天然气替代率的高能量保持较高的最终温度。天然气的替代率越高。NO形成率越高,NO形成量越高。
3.油-气高压直喷发动机掺氢后,气体燃料中掺氢比的变化对发动机点火和燃烧过程影响不大。随着氢混合比的增加,天然气的放热提前。
4.利用NSGA-Ⅱ优化方法,对引燃柴油喷油时间、天然气喷射与柴油喷射的时间间隔、柴油喷嘴孔与天然气喷嘴孔的周向偏角等三个对发动机性能有重要影响的主要喷油参数进行了优化,经过连续多代的逐步进化,协调三个目标之间此消彼长难以协调的关系,三项目标均取得了较为明显的改善,优化参数可同时降低双燃料发动机中的氮氧化物和碳烟。此外,当柴油喷射和气体喷射之间的喷射间隔为1.38℃A时,达到最低ISFC。