论文部分内容阅读
异种材料复合构件在节约能源、减少碳排放等领域中具有显著优势,尤其Ti/Al异种合金接头综合了Ti合金的耐蚀、高强度及Al合金的低成本、密度低等优势,在航空航天、汽车领域中有巨大应用潜力。但二者界面产生的脆性金属间化合物(Intermetallic compounds,IMC)层一直是Ti/Al连接的主要困难,激光熔钎焊技术因热源的精确可控,有望实现对IMC层的控制获得优质Ti/Al接头,已成为Ti/Al连接的研究热点。本文以TC4钛合金和6061-T6铝合金为研究对象,解决了TC4/6061接头钎焊界面IMC层、铝侧热影响区、熔焊区出现的问题。首先分析了工艺参数对TC4/6061双焦点接头成形和性能的影响,研究了不同形貌的界面IMC层与接头断裂行为之间的关系,确定了有利于接头性能的IMC层特征。结合焊后热处理消除了铝侧热影响区软化,并分析了界面IMC层和熔焊区的组织在热处理过程中的演变。利用微观组织表征及热力学计算,明晰了Si元素对界面反应的影响机制。最终利用激光填粉焊接结合焊后热处理实现了钎焊界面IMC层、熔焊区组织及铝侧热影响区的同步调控,提高了TC4/6061接头的强度。本文研究为Ti/Al异种材料的连接提供了理论指导。首先研究了双焦点激光对TC4/6061接头成形、界面特征和性能的影响,结果表明,相比传统的单焦点,并行双焦点激光改善了熔化焊丝的润湿铺展能力,减小了界面IMC层的厚度并提高了其分布的均质性,提高了接头强度。针对TC4/6061双焦点接头,钎焊界面IMC层的形貌及其分布特征决定了接头的断裂行为,0.35~2.10μm的连续锯齿状IMC层改善了界面结合力,有利于接头强度的提高。IMC层为0.45±0.10μm的连续锯齿状时,保留余高的接头强度最高达241MPa。分析了坡口形式、激光功率等关键参数对TC4/6061双焦点激光焊缝成形和组织性能的影响,获得了最优界面IMC层的生成条件。利用焊后热处理消除了铝侧热影响区的软化,提高了TC4/6061接头的力学性能,并分析了热处理过程对钎焊界面IMC层及熔焊区组织的影响。530℃保温过程中,界面IMC层厚度会随保温时间的增加而增大,其生长遵循界面反应控制机制,原始试样IMC层物相为Ti(Al,Si)3、Ti5Si3、Ti7Al5Si12相。热处理后试样IMC层物相变为含有高密度位错的Ti7Al5Si12相,相转变提高了接头强度对界面IMC层厚度的敏感性。熔焊区Al-Si共晶组织变为球化的Si颗粒,颗粒尺寸随保温时间的增加而增大。530℃/2h+180℃/10h处理后,去余高的TC4/6061焊缝强度增加至260MPa,保留余高的接头强度可达300MPa,达到了铝母材强度的94%。结合有限元数值模拟及Ti-Al-Si三元体系自由能的计算,分析了界面IMC层中各物相的形成机制,并揭示了Si由焊缝向TC4侧钎焊界面的扩散机制。指出当填充材料中Si含量超过5.0wt.%以后,界面IMC层中的物相种类不会发生改变,均为Ti(Al,Si)3基体相及Ti5Si3、Ti7Al5Si12纳米颗粒相。纳米颗粒相的形成存在两种机制:在Ti/Ti(Al,Si)3界面处由热力学特征决定的直接反应形成机制;在Ti(Al,Si)3基体相中的由富Si纳米团簇向Ti7Al5Si12、Ti5Si3析出形成机制。Si元素热力学模型计算的结果表明,其化学势随Ti含量的增加而降低,化学势梯度是导致Si向TC4侧钎焊界面扩散的驱动力。最终,通过激光填粉的方式将Al-10Si-Mg粉末引入TC4/6061连接中,利用多层沉积的方式实现界面IMC层的控制,通过焊后热处理消除了铝侧热影响区的软化并同步实现了熔焊区强化相Mg2Si和β’的析出,将去余高的TC4/6061焊缝强度由Al-12Si焊丝的260MPa提升至291MPa。