【摘 要】
:
航天器作为各国大力发展的空间飞行器,在军事与民用领域发挥着日益重要的作用。为实现节省燃料、增加在轨运行时间的控制目标,航天器结构逐渐由轻质材料替代,但该材料会引起较大柔性附件(如太阳能帆板、天线等)振动问题;同时,由于液体燃料晃动与重力梯度、太阳光压等外界环境干扰,导致航天器系统呈现强非线性、强耦合特点。此外,受执行机构与测量元件影响,航天器在姿态控制中会存在控制输入约束、角速度不可测等问题,降低
论文部分内容阅读
航天器作为各国大力发展的空间飞行器,在军事与民用领域发挥着日益重要的作用。为实现节省燃料、增加在轨运行时间的控制目标,航天器结构逐渐由轻质材料替代,但该材料会引起较大柔性附件(如太阳能帆板、天线等)振动问题;同时,由于液体燃料晃动与重力梯度、太阳光压等外界环境干扰,导致航天器系统呈现强非线性、强耦合特点。此外,受执行机构与测量元件影响,航天器在姿态控制中会存在控制输入约束、角速度不可测等问题,降低控制性能,甚至破坏控制系统稳定性。因此,本文围绕该课题,以实现航天器快速高精度姿态控制为目标,对柔性振动与姿态控制问题展开研究。本文主要研究内容如下:首先,针对输入约束下复杂航天器柔性振动与姿态控制问题,设计反正切函数面,保证复杂航天器四元数快速收敛;将柔性振动、液体晃动与外界干扰作为综合不确定,提出基于补偿有限时间姿态控制器,保证对综合不确定的估计与补偿;进一步地,通过在超螺旋滑模控制器基础上加入反馈项,设计饱和超螺旋滑模补偿控制器,实现输入约束下有限时间高精度姿态控制。其次,由于将柔性振动作为不确定控制方法为被动解决振动的方法,柔性振动仍存在,为实现柔性振动主动抑制,提出改进输入成形器与自适应连续终端滑模控制器综合控制方法。考虑输入成形器存在脉冲序列作用时间与鲁棒性的矛盾,提出快速鲁棒输入成形器,实现柔性振动快速有效抑制;提出二阶自适应连续终端滑模控制器,该控制器在不需要干扰高阶导数信息情况下,实现有限时间高精度姿态控制。再次,为避免输入成形器作为前馈滤波引起的时延问题,提出基于正位置反馈控制器-角速度观测器-终端滑模控制器的综合控制方法。通过辨识柔性振动频率,设计正位置反馈方法抑制柔性振动;设计角速度观测器,避免四元数二阶导数有界或半全局有界等假设,实现角速度有限时间估计;基于角速度估计值,通过在控制器中加入四元数估计误差反馈项,设计终端滑模控制器,减少角速度估计系统对姿态控制精度的影响,实现角速度不可测下柔性振动抑制与姿态控制。最后,考虑正位置反馈方法基于智能材料,会增加航天结构复杂度,进一步提出柔性振动观测器-干扰观测器-状态反馈控制器综合控制方法。综合设计柔性振动观测器与干扰观测器,实现柔性振动与综合不确定有效估计;基于柔性振动与综合不确定估计值,将柔性振动做为状态量,设计基于状态反馈姿态控制器,实现在不加入压电材料的情况下,实现柔性振动抑制与快速高精度姿态控制。
其他文献
直流输电在我国跨区域电力传输、资源优化配置方面发挥了重要作用。全控型电力半导体器件及其控制技术的发展使基于电压源型换流器的柔性直流技术日渐成熟,这将进一步促进新能源的消纳、提高系统柔性控制能力和供电可靠性,同时解决常规直流输电技术和交流电网面临的技术难题。然而,柔性直流系统的继电保护与故障隔离仍是当前面临的主要技术瓶颈之一。柔性直流系统故障电流上升速度快、幅值高,故障发展速度快、影响范围广等特征导
<正>“好的开始,是成功的一半。”这句话的下一句可能是“坏的开始,不能称之为‘开始’”,尤其是对于研究生学位论文选题和开题报告来说,坏的开始还不如从未开始。我所读的专业大概在研二第二学期中,也就是五月份左右召开开题报告会。研二第一学期的时候,我依然在“无知”的道路上努力爬行,试图为自己的大脑增加一些专业知识的重量。那个时候的自己丝毫未意识到如果对自己的学位论文选题毫无打算,会面临什么样的狂风暴雨,
电学和超声层析成像技术具有非侵入、无辐射、低成本等优势,在工业和生物医学领域受到广泛的关注。受成像模态的敏感原理、逆问题的非线性和不适定性、数据采集系统噪声干扰等限制,传统的单模态电学、超声层析成像技术常面临成像精度有限、鲁棒性较差等问题,限制了二者在实际测试中的广泛应用。为克服单模态电学、超声层析成像技术的局限性,提升图像重建的精度和鲁棒性,以构建电学/超声双模态图像重建算法框架和开发融合成像方
油气水多相流广泛存在于油气开采过程中,开展油井内产液剖面流动参数测量研究对油气田开发方案优化具有重要意义。油气水三相流在流动过程中,由于存在两个物理特性的不同的分散相,相间存在复杂的界面效应和相对速度,且相界面在时间和空间上随机变化,使得油气水三相流成为一个复杂的工业过程,在不同的流动条件下会形成不同的流动结构,这会严重影响油气水三相流的流动特性和传质、传热性能,而且油气水三相流的多种流动参数测量
在节能减排、安全监控、国防军工和科学研究等诸多领域,气体流量测量发挥着至关重要的作用,测量准确度的实现及保障是其核心问题。音速喷嘴结构简单、计量性能稳定,不仅可作为流量计直接测量气体流量,亦可作为传递标准表标定其他类型的流量计。本文以音速喷嘴为研究对象,聚焦其关键计量特性参数——流出系数,通过理论分析、数值模拟和实验测量,提出了基于宏观表面结构测量的非实流标定流出系数计算方法,接着分析边界层转捩与
随着能源危机与环境污染问题的日益突出,各类可再生和清洁能源得到快速发展,高效利用电-气-热等多种能源形式的综合能源系统应运而生。开展电-气-热综合能源系统的规划及可靠性评估研究,对加快清洁低碳、安全高效可持续能源系统构建具有重要意义。考虑电-气-热综合能源系统中分布式电源及多元负荷的不确定性,本文围绕电-气-热综合能源系统的公共信息模型扩展、多能流计算、可靠性评估和协同规划四个方面开展了研究,主要
高比例新能源的接入、开放共享通信网络的大规模应用是现代电力信息物理系统的两大主要特征。在此背景下,频率稳定性受到物理层与信息层的双重挑战:1)弱惯性量新能源机组的大规模接入压缩了传统具备旋转惯量的同步发电机组的比例,导致电力系统在应对负荷与新能源出力波动时缺乏足够的惯性量支撑与充足的频率调整裕度,引发频率偏差过大甚至发生频率越限。2)参与设备与互联规模的扩大导致参与发电设备状态量与控制中心发出的控
电力电缆是高压直流输电系统的关键设备,电缆带负荷运行过程中导体发热导致绝缘层温度升高,引发绝缘材料体电导率变化,加剧空间电荷积聚和电场畸变,造成绝缘击穿强度下降,严重威胁电力系统的安全稳定运行。本文着眼于高压直流电缆XLPE绝缘材料体电导率、空间电荷和击穿特性的协同调控,提出基于氧化石墨烯(GO)纳米颗粒微填充和多环芳烃化合物(PAC)小分子共混的XLPE改性方法,围绕直流电压极性反转工况建立XL
1 研究背景多相流是一种常见的流动现象,在自然界、工业生产以及能源利用中广泛存在。油水两相流是具有代表性的液液两相流动形态,也是石油、化工、动力等现代能源与过程工业领域的常见流体。油水两相流动状态和机理研究对发展两相流基础理论、保障生产安全高效运行、研制新型过程设备具有重要作用,其中涉及到很多的关键过程参数及其分布的在线检测问题。流速是表征流动过程状态和特性的关键分布参数,油水两相流流速及其分布信
随着配用电系统中智能传感器设备的广泛使用,电力公司积累了史无前例的海量数据。充分挖掘配用电大数据价值,能够提升电力服务水平,促进配用电系统数字化、信息化、智能化发展。因而实现配用电大数据的处理、分析及应用意义重大。本文围绕配用电大数据处理、分析及应用展开,涉及到设备级负荷辨识、数据清洗压缩、数据价值挖掘以及用电隐私信息保护等问题,取得了一定的研究成果,主要工作总结如下:1)针对用户用电数据细粒度不