论文部分内容阅读
T23钢是一种新型蠕变强度增强型铁素体耐热钢,具有热导率高、热膨胀系数低等特点,还具有良好的焊接性和优异的高温蠕变性能,是超超临界锅炉水冷壁、过热器、再热器等受热面部件的理想材料。然而,在电厂的应用中发生过多起再热裂纹引起的T23接头开裂导致水冷壁或再热器的爆管和泄漏事故,严重影响了机组的安全稳定运行。目前,T23钢再热裂纹形成机理尚不清楚,没有有效的防治方法。因此,有必要深入研究T23钢再热裂纹形成机理,并在此基础上研究化学成分对其再热裂纹的影响,探讨抗再热裂纹T23钢的成分改良设计。本文先研究T23钢再热裂纹形成机理。采用插销试验和模拟粗晶区短时蠕变破断试验,对商用T23钢再热裂纹敏感性进行评估,利用扫描电镜(SEM)、透射电镜(TEM)、能谱仪(EDS)对断口微观形貌、裂纹特征、析出相和晶界附近合金元素的贫化进行表征和分析,确定导致再热裂纹的关键因素,揭示再热裂纹形成机理。随后进一步研究T23钢粗晶区在650°C、0240 h时效过程中的组织演变,评价粗晶区时效前后的再热裂纹敏感性,分析组织状态对再热裂纹敏感性的影响,进一步深化对T23钢再热裂纹机理的认识,并建立预测在役T23接头再热裂纹敏感性的硬度判据。在确认晶界M23C6析出弱化晶界是导致T23钢再热裂纹产生的主要因素之后,研究碳、硼和钛等元素对M23C6析出行为及再热裂纹的影响,采用电子探针显微分析仪(EPMA)分析硼元素在粗晶区组织转变过程中的偏聚行为,揭示碳、硼和钛等元素影响再热裂纹的机理。最后,对多组不同含碳量和含硼量T23钢再热裂纹敏感性进行评估,构建了碳和硼含量与再热裂纹敏感性的关系,提出改良型抗再热裂纹T23钢的合金设计,并提出了预测T23钢再热裂纹的成分判据。研究结果表明:(1)高温拉伸过程中晶界析出的M23C6型碳化物弱化晶界是导致再热裂纹的主要原因,晶内析出的M23C6和M7C3型碳化物强化晶内是导致再热裂纹的次要原因,晶内MX型碳化物在高温拉伸过程中析出很少,不是导致T23钢再热裂纹的直接原因。晶界M23C6从两个方面弱化晶界,一是促进孔洞形核,二是造成附近基体合金元素贫化。(2)在再热过程中,粗晶区组织发生回复及再结晶,位错密度下降,亚晶粒(板条)尺寸增大;在较短时间(24h)内晶内析出M3C、M7C3和少量的M23C6,晶界析出大量M23C6,在较长时间(2448 h)后MX在晶内大量析出;组织转变使硬度逐渐下降,再热裂纹敏感性也逐渐降低。时效过程中的组织变化使晶内强度下降,晶界附近合金元素均匀化,组织也渐趋稳定。在高温拉伸过程中,组织不会发生明显的转变,有效避免了晶界弱化和晶内强化,缩小了晶内和晶界的强度差,因而塑性变形能力提升,再热裂纹敏感性下降。当粗晶区的硬度低于250 HB,对再热裂纹不再敏感,250 HB是粗晶区组织对再热裂纹不敏感的临界硬度值。(3)降低碳含量可以降低粗晶区晶内强度,减少晶界M23C6相的析出,减轻晶界的弱化,从而降低晶内和晶界的强度差,降低再热裂纹敏感性。(4)硼元素在焊后偏聚于粗晶区晶界,一方面起到直接强化晶界的作用,另一方面抑制了再热过程中晶界M23C6的析出长大,使得晶界强度得以保持,缩小晶内与晶界的强度差。因而,塑性变形也在晶内产生,使得整体塑性得到提升,再热裂纹敏感性降低。(5)钛对T23钢再热裂纹敏感性直接影响较小,远低于碳和硼的影响。虽然钛与碳的结合力强于铬、钒和钨,但其在短时间内难于形成MX相,不会造成晶内强化,且对M23C6相的析出没有影响,这是适当增加钛对T23钢再热裂纹敏感性影响不大的主要原因。(6)碳和硼对T23钢再热裂纹敏感性的影响最为显著,调整硼和碳的含量满足:[%B]>-1.4×[%C]2+0.35×[%C]-0.0115关系时,得到对再热裂纹不敏感的改良型T23钢。综合各元素的影响,提出以下预测T23钢再热裂纹敏感性的判据:FS=10C+0.47Cr+0.14Mo+0.038W-58.9B-1.45,当FS≥0,敏感;当FS<0,不敏感。本论文丰富和发展了低合金钢焊接性理论,解决了制约新型低合金耐热钢T23应用中的瓶颈问题,对于高参数火电机组的材料应用和开发具有重要的理论意义和实用价值。