论文部分内容阅读
目的:目前我国有关能量消耗的研究大部分围绕简单的中、低强度的周期性体力活动展开,鲜少涉及到高强度复杂的体力活动,且有关于神经网络模型对体力活动能量消耗的预测应用较少,本研究通过对不同佩戴部位的加速度计原始数据的处理,建立不同佩戴部位的线性回归模型和神经网络模型,并对相同、不同佩戴部位的两个模型进行横向的比较,以寻找出最优化的预测模型,从而丰富加速度计的测量领域,让其更好地为运动实践服务。方法:本次研究采用测量法,受试者在4个部位(优势和非优势手腕外侧、髋部右侧和右脚踝外侧)佩戴4个Actigraph GT3X加速度计(简称GT3X),在胸前佩戴1个Cosmed K4b~2气体代谢能耗分析仪(简称K4b~2),通过大屏幕播放的已剪辑好的高强度健身操视频,除去热机准备和热身时间,受试者进行时长为9分钟的高强度复杂运动(本研究选择健身操作为典型代表)。使用SPSS 22.0建立一般线性回归模型,通过SPSS Modeler18.0建立神经网络模型,并使用Bland-Altman方法和比较RMSE等指标对两个预测模型进行预测准确性检验。结果:(1)运动过程中身体形态学指标与能量消耗EE的相关性分析中,体重指标与EE的相关性最高,建模组r=0.505(p<0.01),验证组r=0.41(p<0.01);4个佩戴部位的加速度计VM值和HR与K4b~2能量消耗的EE、METs的相关性分析中,4个部位的VM值与EE、METs的相关性都很显著(p<0.01),其中优势手腕的相关性最为显著,HR与EE、METs的相关性最强,与EE的相关性为0.486(p<0.01),与METs的相关性为0.502(p<0.01)。(2)本研究构建的四个部位线性回归预测方程如下:非优势手腕EE=0.000014VM+0.135体重+0.004HR-1.071脚踝EE=0.000025VM+0.135体重+0.004HR-1.157腰部EE=0.000029VM+0.135体重+0.003HR-0.674优势手腕EE=0.000024VM+0.133体重+0.004HR+0.187非优势手腕调整后R~2=0.519,脚踝调整后R~2=0.521,腰部调整后R~2=0.518,优势手腕调整后R~2=0.522。(3)本研究构建出的四个部位的三层神经网络预测模型初始学习率为0.05,动量常量设为0.5,误差率设为0.001,模型如下:非优势手腕13-9-1三层神经网络模型(R~2=0.808)脚踝13-9-1三层神经网络模型(R~2=0.796)腰部13-13-1三层神经网络模型(R~2=0.771)优势手腕13-8-1三层神经网络模型(R~2=0.795)(4)线性回归模型和神经网络模型实测值与预算值的一致性检验中,在B-A图中,不同模型不同部位的各散点都基本落在±1.96SD之间,非优势手腕、脚踝、腰部和优势手腕这4个部位的神经网络模型和线性回归模型均有良好的预测能力。(5)通过计算不同部位预测值的RMSE、MAPE和BIAS指数并进行横向比较,神经网络模型非优势手腕、优势手腕、脚踝和腰部这4个部位的RMSE和MAPE均低于线性回归模型,神经网络RMSE指数分别为:0.98、2.85、1.05和1.16,线性回归模型的RMSE指数分别为:1.65、4.7、1.64、1.7,神经网络模型的优势手腕和腰部的BIAS指数也明显低于线性回归模型,从整体误差上来看,神经网络模型的误差更小。结论:(1)本研究构建的四个部位的线性回归能量消耗方程具有较高拟合度,在预测运动能量消耗方面具有较高的准确度,可应用于大多高强度复杂运动能量消耗的监测。(2)本研究构建的四个部位的三层神经模型具有很高的拟合度,准确性优于一般线性回归模型,能够准确预测高强度复杂运动的能量消耗,经验证其在预测运动能量消耗方面具有很高的准确性,为最优化的预测模型。