基于区块链的策略隐藏访问控制方案研究

来源 :河北大学 | 被引量 : 0次 | 上传用户:xiangwang111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
物联网技术的不断发展极大的改善了人们的生活质量,同时也带来了一些新的挑战。万物互联时代离不开数据的交互,访问控制被认为是实现数据安全交互的一种重要方式,然而现有的访问控制方案大多都是基于集中式服务器构建的,存在单点故障问题。区块链应用了多种技术实现了去中心化,被认为是一个很有前途的分布式解决方案,能够有效提高访问控制系统的可靠性。因此,本文对基于区块链的访问控制机制展开研究,主要工作如下:针对传统的属性基加密方案中存在的单点故障、效率低下、不支持数据共享以及隐私泄露等问题,提出了一种基于区块链且支持数据共享的密文策略隐藏访问控制方案。首先,提出了一种高效的属性向量和策略向量生成算法,之后利用素数阶双线性群和内积加密,实现细粒度访问控制的同时避免了用户属性值的泄露;结合以太坊和星际文件系统解决了用户属性撤销问题和云存储模型中的单点故障问题并通过代理重加密的方法实现了数据共享。最后基于DBDH假设,证明了方案的安全性。仿真实验结果表明,所提方案在实现策略隐藏的同时还具有较高的效率。针对区块链中数据公开透明带来的隐私泄露问题,设计了一种基于区块链的属性隐藏和策略隐藏访问控制方案。首先,对上述方案中提出的属性向量和策略向量生成算法进行了拓展并将其应用到新的访问结构中。在此基础上,利用双线性对提出了一种非加密策略匹配算法,保护属性隐私和访问策略隐私的同时避免了繁琐的公私钥产生和加解密过程。安全性分析和实验结果表明本方案是安全有效的。
其他文献
许多机器学习问题都可以表示成损失函数加正则化项的形式,目前最流行的求解方法是以随机梯度下降(Stochastic Gradient Descent,SGD)为代表的随机梯度优化算法。然而,最常用的小批量或单样本的随机梯度下降是计算速度与求解精度的折衷。随机梯度下降的优势主要有两点,一是每次迭代不需要计算全样本梯度,减少了计算量;二是避免由于样本数据过大导致的内存不足问题。但是这带来的问题是引入了随
学位
图像聚类是机器学习和计算机视觉中一项关键而又具挑战性的任务。传统的聚类方法,如K-Means,谱聚类,凝聚聚类等已广泛应用于各类任务,并取得了不错的结果。但对图像等高维数据进行聚类时,由于很难抽取到可判别的视觉特征表示,往往无法得到满意的聚类结果。为了解决该问题,很多研究者提出使用不同的深度卷积网络学习图像数据的特征表示,并结合传统聚类算法,实现图像数据的深度聚类,且已取得了较好的结果。本文主要基
学位
近些年,深度学习作为一种人工智能技术取得了前所未有的发展,在许多领域都取得了巨大的成功,展现出了强大的应用潜力。然而,最近的研究表明深度神经网络(Deep Neural Networks,DNNs)模型容易受到对抗样本的愚弄。所谓对抗样本是指那些通过精心添加一个不易察觉的扰动设计的对抗性样本,对抗样本可以愚弄一些最先进的DNNs模型,导致DNNs给出错误的分类结果,这阻碍了在现实世界中部署DNNs
学位
在数据挖掘领域,分类问题一直都是研究的重点,而传统的分类器大多是针对平衡数据进行分类,无法对不平衡数据进行准确地分类。为了解决数据不平衡分类问题,人工少数类过采样法被提出,但由于是随机选取少数类样本的近邻样本进行生成新样本,容易导致少数类边界模糊的问题。为了弥补这一缺陷,基于引力的人工少数类过采样法(GSMOTE)被提出。首先,该方法结合原始支持向量机和K近邻方法对原始数据进行去噪,避免噪声样本生
学位
近年来,语音情感识别的研究一直是一项具有挑战性的任务。语音情感识别的目的是从语音中提取情感特征,并将其分类为快乐、悲伤、愤怒或中性等情感。早期的语音情感识别的研究广泛依赖于使用音频特征来构建性能良好的分类器的模型。但人类在对话中不仅通过语音表达情感,还通过面部表情和身体动作来表达情感,而语音信息本质上是由声学特征和文本信息组成,因此文本信息中也包含情感特征。由于仅使用语音数据的情感识别模型的性能逐
学位
随着科技的进步,我们已经进入了海量数据的时代,人们生活的方方面面都会产生海量数据,这些数据属于各种各样的类别,在现实生活中这些类别下的数据大多数都是非平衡的。例如病例诊断,天气气候分类,野外稀有物种的检测、垃圾短信检测等。如何有效准确地分类这些非平衡数据就变成如今一个非常热门的研究领域。绝大多数的分类算法在分类时会偏向多数类别的群体,而对少数类别分类效果不好,在一些极端情况下甚至会完全忽略少数类别
学位
基于重构的异常检测方法是指使用重构误差作为异常得分的异常检测方法,在其训练阶段,训练集仅由正常数据构成,当训练数据较为充分时,它在该训练集上能够取得较小的重构误差。在测试阶段,正常数据的重构误差和异常数据的重构误差会出现较大的差异,因此可以利用重构误差将待测数据判定为正常数据或异常数据。作为常用的基于重构的异常检测方法,基于生成式对抗网络(generative adversarial nets,G
学位
在计算机硬件性能提升的基础上,深度学习算法被广泛应用,人工智能技术不断有新的突破。其中图像和文本领域的技术创新尤为显著,主要体现在问答系统、目标检测、情感识别等研究方向上。本文主要研究的是计算机视觉与自然语言处理的交叉领域——视觉问答系统。视觉问答系统是多模态领域的一项热门研究问题,该系统的主要任务是分析与识别图像和文本两种模态下的表征数据,并对多个模态下的数据进行特征融合处理,以便获得相应问题的
学位
目前,Top-N查询处理和优化的研究主要是针对Top-N选择查询,而Top-N连接查询相关研究仍然较少。传统Top-N查询处理方法通常未整合实体解析技术,对于包含重复元组的脏数据集,这些方法可能检索出重复的Top-N结果,难以得到足够多的有效元组,查询效率低下。此外,对于大型数据集,实时实体解析是一个具有挑战性的问题。因此,如何将实时实体解析与Top-N连接查询有效融合,是一个有待深入研究的重要课
学位
鲁棒极限学习机因其较高的泛化能力和较快的学习速度。已经成为比较常用的机器学习工具之一,并在现实中的许多方面得到应用。然而,传统的鲁棒极限学习机还有不足之处:一、大多数鲁棒极限学习机以2L范数为损失函数。众所周知,2L范数对于异常值非常敏感,更容易受到极端异常值的影响,当数据中含有过多极端异常值时,大多数算法将崩溃。二、鲁棒极限学习机对于神经元数量非常敏感,当神经元数量过多时,可能会发生过拟合,导致
学位