【摘 要】
:
全球经济快速发展的同时也产生了大量的工农业污染物,未经合理处置的污染物排入水源中导致大量水资源被污染无法使用,目前水污染问题已经成为世界性主要环境问题之一。按照污染物的类型主要可以分为生物、物理和化学三种不同的污染物。生物污染物主要是致病细菌和其它微生物病原体污染。物理污染一般是放射性污染物,核电站经常会排放出放射性的物质污染水体。化学污染物主要是有机农药、化肥和生活排放的污水,其中含磷的有机物容
论文部分内容阅读
全球经济快速发展的同时也产生了大量的工农业污染物,未经合理处置的污染物排入水源中导致大量水资源被污染无法使用,目前水污染问题已经成为世界性主要环境问题之一。按照污染物的类型主要可以分为生物、物理和化学三种不同的污染物。生物污染物主要是致病细菌和其它微生物病原体污染。物理污染一般是放射性污染物,核电站经常会排放出放射性的物质污染水体。化学污染物主要是有机农药、化肥和生活排放的污水,其中含磷的有机物容易导致水体富营养化,水藻大量生长破坏水体生态环境;工业生产中产生的重金属离子,同样会导致水体污染。这些污染物已经严重威胁到人类的生命健康安全,如何处理这些污染物已经成为一个公认的难题。氮化硼(BN)是由等化学计量比的氮、硼原子组合而成的III-V族化合物,具有多种排列方式,不同的排列方式赋予氮化硼不同的物理化学特性。六方氮化硼拥有和石墨烯非常相似的结构,石墨烯是由C单原子层堆叠而成,而六方氮化硼是由BN组成的原子层相互堆叠,所以六方氮化硼有时也被称为“白色石墨”。六方氮化硼具有优异的热稳定性、抗氧化性等性能,被广泛应用在生活生产中各个不同的领域。本文针对水处理方面的难题,基于氮化硼吸附性能,设计了结构优异的水处理材料来克服目前所面临的问题。具体的工作如下:(1)通过高温热解合成的氮化硼气凝胶具有高比表面积、丰富的孔隙空间、丰富的官能团,对水中的污染具备良好的去除效果。本工作通过对有害微生物、重金属离子、有机废液等污染物进行过滤吸附处理,证明氮化硼气凝胶在污水处理中的潜力。对微囊藻细胞去除率>99%,对大肠杆菌的去除率>98%,对重金属离子Cu2+、Co2+、Ni2+、Fe3+和Cr2O72-的吸附,吸附量分别为527、176、135、262和68 mg g-1。同时对工业油、含磷农药等有机污染物实现重复吸附。(2)探索新型氮化硼结构的合成方法,使氮化硼材料应用在更广泛的领域。利用湿法纺丝法制备连续的氮化硼纤维,并通过预氧化处理,得到氮化硼复合纤维的拉伸强度达到27.4 MPa,与初生纤维相比拉伸强度提升2.7倍。利用喷雾干燥法成功制备尺寸在200 nm-2μm之间的球形氮化硼材料。使用金属有机骨架材料ZIF-8作为模板合成不同形貌的氮化硼材料。
其他文献
随着数字图像的分辨率、帧率和质量的提高,以及数字图像系统的集成度的增加。高动态范围(High Dynamic Range,HDR)图像技术成为图像领域中研究的热点,在医疗、航空航天、安防监控、智能电子设备、游戏特效等方面都有广泛应用,实用性很强。常见图像传感器的动态范围和自然环境光或人眼可以辨别的亮度动态范围相差较大,导致获取的图像会存在过曝光和欠曝光的情况,图片细节丢失,观感差。因此产生了还原高
近年来,有机场效应晶体管(Organic Field Effect Transistors,OFET)因其低成本、可大面积制备、质量轻等优点在柔性电子器件中得到了广泛的应用,也引起了很多研究学者的关注。目前,OFET已经成为有机电子和柔性电子领域的核心器件之一,正处于商业化生产和应用的边缘。尽管如此,OFET仍存在一些问题需要解决,如:n型有机半导体材料种类少、迁移率低、稳定性差、结构-性能关系尚
直流气体绝缘输电线路(GIL)经过长时间运行后其绝缘子表面会积聚大量电荷,使得绝缘子表面的闪络电压下降,研究表面电荷的消散问题有助于突破绝缘子表面电荷积聚对直流GIL进一步应用的制约。在我国将特高压建设纳入新基建的大背景下,开展直流GIL绝缘子表面电荷消散问题的研究意义重大。本文基于自行设计搭建的直流GIL平台和表面电荷测量装置,就表面电荷积聚量、表面电荷的积聚位置、绝缘子表面电导率和空气湿度四个
用户侧智慧能源管理系统是智能电网与泛在电力物联网在用户侧实现的关键技术之一。该系统不仅可以对用电设备进行科学管理,优化电力资源配置,倡导节约用电,提升用电效率,还能够为用户提供主动参与电网需求响应的平台。但当前在用户侧智慧能源管理系统中,存在底层终端异构设备通信方式多样,不易于接入系统统一管理和底层终端数据传输可靠性、稳定性、实时性以及效率不高等问题。本文从实际项目需求出发,并将针对上述问题主要做
为了解决锂离子电池原料缺乏以及成本较高等问题,研究人员不断努力寻找一种电池作为理想的锂离子电池替代品。然而,由于钠离子电池原料储量丰富、价格较低等特点,且与锂离子电池工作原理相似,因此,近年来受到广泛关注。在本论文的研究中,我们选取钠离子电池正极材料Na3V2(PO4)2F3/C作为研究对象,探究合适的碳源、Na F和VPO4的比例以及改性等方面对其的综合影响。改性方法包括采用Na3V2(PO4)
建筑门窗所产生的能耗占建筑围护结构总能耗的比重很大,是围护结构中节能薄弱环节,因此越来越多的学者对新型节能窗户展开研究。由于半透明光伏窗不仅可以降低室内得热从而减少建筑能耗,还能够利用光伏发电,因此得到广泛关注。然而半透明光伏窗的电池覆盖率和电池宽度均会对采光性能造成影响,电池覆盖率过大,室内天然采光量无法满足要求,反之则会导致眩光等视觉不舒适问题。此外,相同的电池覆盖率但不同的电池宽度也会影响采
锆合金因良好的抗腐蚀性能和优异的力学性能被广泛用作核动力压水堆包壳材料。锆合金作在高温下与水直接接触,并产生大量的氢。当氢的浓度达到极限时,极有可能行成脆性氢化物,从而导致材料的氢脆现象。在实际使用过程中,材料中的固有杂质(如碳,氮,氧)会与氢发生相互作用,从而对锆合金的力学性能及机械性能产生很大影响。因此,研究杂质原子在锆中的行为及其与氢原子的相互作用具有十分重要的意义。在本文中,我们采用第一性
恶性黑色素瘤是最为致命和威胁性最大的皮肤癌之一,有着高复发性、易转移性和低存活率等显著特点,近年来发病率和死亡率不断攀升。化学治疗是目前恶性黑色素瘤治疗的主要手段之一。然而毒副作用是化疗药物应用于临床的主要障碍。因此为了解决这个问题,我们基于恶性黑色素瘤细胞中高水平的活性氧物种(ROS)和高表达的酪氨酸酶(TYR),提出了双重生物标记物逐级诱导的前药策略,并进行了以下研究:1、首先合成了代表性前药
硫化氢(H2S)作为一种新型气体信号分子,参与并调节人的许多生理和病理过程,在抗炎、抗氧化、治疗神经退化性疾病和癌症等方面具有潜在的应用前景。H2S的生理效应存在浓度与时间依赖性,如何实现H2S的可控产生与释放是H2S生理应用的重要挑战。光诱导H2S释放具有时空控制H2S释放和操纵位置改变的能力,可以调节光照时间和光照强度控制H2S释放量,操作简便。而凝集体液滴作为一种良好的载体,具有分子选择性富
织物增强混凝土(Textile reinforced concrete,简称TRC)由于具有质量轻、强度高和延性好等特点,已经被广泛应用于薄壁结构和工程修复、加固等领域。耐碱玻璃纤维具有抗拉强度高、耐腐蚀性强、价格便宜等优点,便于其在土木工程领域的推广应用。因此,本文通过万能试验机对耐碱玻璃纤维织物增强混凝土(Alkali-resistance glass textile reinforced c