论文部分内容阅读
我国有丰富的低渗透油层资源,但由于受理论与技术发展水平的限制,采收率只能达到20%左右,远低于中、高渗透层水驱—化学驱后采收率可达到60%的指标。造成低渗透油层采收率低的原因很多,根据采收率的定义,波及效率和微观驱油效率决定着采收率的高低。低渗透油层微观驱油效率受孔隙结构、驱替流体性质等诸多因素的影响,研究不同性质流体在多孔介质中的流动规律及其制约低渗透油层微观驱油效率的因素是改善低渗透油层开发效果的关键。低渗透油层孔隙结构复杂、喉道细小、孔喉比大,非达西现象是低渗透油层主要特点。液体在细小流道中流动时受岩石壁面的作用,流动特征、微观作用力及其主导因素发生明显变化。本论文在深入调研国内外关于微流体流动、非达西渗流规律等研究成果的基础上,对水驱油微观机理、多孔介质内微观作用力进行了研究。建立了微孔道内固液相互作用条件下的流体黏性系数表达式、二维流动控制方程及数值方程;研究了收缩-扩张、扩张-收缩两种流道模型的流场分布,分析了不同模型参数条件下的流体流动特征,给出了考虑固液作用、不考虑固液作用两种情况下流体的流动规律;利用应力法确定了孔隙内有效波及效率。主要研究成果如下:通过研究多孔介质内油滴的受力情况,分析了油藏在整个开发过程中流体间作用力的相互关系及其对剩余油分布的影响。特别是考虑了浮力在油藏不同开发阶段对油滴的作用,并应用达西定律研究了流体浮力对垂向剩余油分布规律的影响。结果表明,在油水井中间区域的压力梯度远小于近井区域的压力梯度,而浮力与重力差在油水井间却没有明显变化,导致油滴所受合力的方向同水平方向的夹角变大,油滴向上漂移的趋势增强,容易在油层顶部形成剩余油。为了同固液相互作用条件下流体流动规律进行对比,建立了牛顿流体二维流动控制方程及有限差分数值方程,通过对收缩-扩张、扩张-收缩两种典型流道、不同模型参数的数值计算,研究了相应流道模型的速度、应力及流线分布。结果表明,在相同入口压力梯度的条件下,流道模型参数决定着流道内速度场、应力场、流函数场的分布,分析扩张-收缩流道在相同孔隙半径、不同喉道半径和孔隙长度条件下的计算结果,发现孔喉比和喉道半径是影响流场分布的主要因素,而孔隙长度的影响相对较小;而对于收缩-扩张流道模型,在模型入口压力梯度、孔隙半径不变的情况下,孔喉比、喉道半径、喉道长度对流道内流场分布的影响并不明显。研究了固体与液体分子间的微观作用力,认为固液间的相互作用是形成微孔道边界层的主要因素。流体在半径极其细小的流道中流动时,流体成为边界层流体,其黏度同常规液体的黏度不同,宏观上表现为流体黏度的增加,其值等于流体体相黏度与由固液作用引起的附加黏度之和。通过对微孔道内流体分子的受力分析,给出了微流体的黏性系数表达式,其值为离固体界面距离和固液表面性质的函数。利用所给出的边界层流体黏性系数表达式,建立了二维边界层流体的控制方程及其简化方程,得到了圆形截面毛管和平行窄缝中径向速度分布的近似解。利用有限差分法对二维边界层流体的控制方程进行了离散化,建立了二维边界层方程的数值方程。利用编制的计算机程序,求出了圆形截面毛管中考虑固液作用下流体速度分布的数值解,与前述得到的近似解相比,二者速度分布规律相吻合,证明了考虑固液作用的边界层数值方程及所给边界条件完全正确;利用编制的计算机程序,对流体在收缩-扩张、扩张-收缩两种流道类型内的速度场、应力场、流线场分布进行了数值计算,得到了不同模型参数的流场分布图,与非边界层流体的流动特征相比,考虑固液作用时,流体流速呈数量级减少,孔隙内流体有效波及面积减少,喉道半径越小,固液作用越明显。依据大庆油田真实油藏条件,确定了孔隙模型的几何和流体动力学参数的关系,进而确定了微孔道中原油屈服应力的下限值。根据扩张-收缩流道模型内应力场的计算结果,结合该屈服应力界限值,计算了有效驱油效率,结果表明,孔喉比越大,驱油效率越低。