CMOS多模多频小数频率综合器的关键技术研究与实现

来源 :东南大学 | 被引量 : 0次 | 上传用户:mengminyan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
5G 移动通信的迅猛发展和数据流量的飞速攀升,必然要求未来的移动通信集成电路能够覆盖绝大部分 2/3/4/5G移动通信频段和相应的通信制式。而 CMOS工艺的不断进步和发展,也使得 CMOS 工艺成为多模多频全集成射频前端电路实现的优选工艺之一,因此,研究CMOS工艺下的频率综合器设计具有重要的现实意义。
  本论文以当前5G移动通信的应用场景为背景,基于65nm LP CMOS工艺,研究并设计了能覆盖绝大部分2/3/4/5G移动通信sub-6GHz频段的多模多频的小数PLL频率综合器,并针对其中的关键电路模块提出了相应的技术改进方案。论文主要研究内容和创新点如下:
  从PLL频率综合器的整体结构出发,阐释了锁相环频率综合器的基本原理。介绍了频率综合器设计的常见性能指标,并在频谱纯度指标中引入了相位噪声和杂散的定义。然后,基于连续时间线性化相位分析模型分析了 PLL 频率综合器各模块的噪声传输函数,接着分析了环路的稳定性和动态响应等特性。
  为有效延长delta sigma调制器的输出周期长度并减小量化噪声功率谱密度,首先详细分析了调制器量化噪声对小数 PLL 频率综合器相位噪声的影响,然后基于确定性法(Deterministic method),提出了采用负反馈技术构成质数模数的单环负反馈 MASH DDSM结构,理论分析和FPGA验证均表明,该结构具有目前文献记载的最大的输出周期长度,可以有效减小调制器的量化噪声功率谱密度;接着基于扰动法( Stochastic method),提出了采用外加扰动信号延长SP-MASH DDSM输出周期长度的方法,理论分析和FPGA验证均表明,该方法可以有效减小SP-MASH DDSM在半量化步长输入下的量化噪声功率谱密度。
  为覆盖2/3/4/5G移动通信sub-6GHz的绝大部分频段并减小电路功耗,采用电流复用和电感切换技术,设计实现了一款6比特控制字的宽带VCO芯片,测试结果表明,该VCO输出频率可以连续地从3.991GHz调谐到9.713GHz,在整个频率调谐范围内的相位噪声为-93.09~-111.97dBc/Hz , VCO 核心电路在 1.2V 电源电压下消耗电流为3.7~5.1mA,优值FOMT为-191~-197dBc/Hz。
  为进一步减小delta sigma调制器量化噪声对小数频率综合器的相位噪声的影响,基于同步4分频相位切换技术设计了0.5步进的可编程分频器链路。后仿真表明,该分频器链路的工作频率范围为 5~12GHz,分频比覆盖范围为 60.5~252,1.2V 电源电压下的电流消耗为9.022~10.367mA(包含测试buffer功耗)。此外,针对宽带PLL频率综合器环路中的快速锁定问题和带宽偏移问题,分析并设计了采用频率比较法的自动频率校准电路以及采用可编程电荷泵动态调节电荷泵电流的环路带宽校准单元。理论分析和仿真验证表明,该自动频率校准电路和环路带宽校准单元的校准时间为13.02us。
  最后,基于以上电路单元完成了整个多模多频小数频率综合器的版图设计工作并交付流片。整个芯片占用面积约为0.94mm×1.06mm(包含焊盘)。
其他文献
流化床因具有物料掺混性强、燃料适应性广等特点被广泛应用在诸多工业领域中。现有研究成果表明,在流化床中添加一定量超细颗粒可以有效降低颗粒间的磨擦损耗,起到润滑作用,从而在一定程度上能改善气固混合的均匀程度,然而添加过量的超细颗粒将会导致颗粒聚团的形成、降低流化质量,因此研究添加超细颗粒后的双组分颗粒混合流动特性,对提高工业生产效率、产品品质有着重要意义。  本文以双流体模型为框架,基于黏性颗粒动理学
学位
地热汽轮机是地热电站中的重要设备之一,与其他领域汽轮机的最大不同之处就是汽轮机的工质纯净度有差异。地热汽轮机的工质成分更加复杂,传统汽轮机的工质大多为高温高压流体,而地热汽轮机的做工介质则为地热介质,地热介质成分复杂,除了含有大量的酸性成分如硫化氢氯、碳酸盐、铵、碳酸氢钠、碳酸气、硫酸盐等之外,在汽水热介质中,还有大量的固体杂质,如二氧化硅、碳酸钙、铁及其他化学物质,虽然为了处理这些颗粒在主汽阀签
高压功率器件和驱动芯片的不断创新推动着电源系统快速发展,目前硅基功率器件特性已接近理论极限,阻碍了电源系统效率的进一步提升,采用氮化镓功率器件替代传统硅基功率器件正成为突破电源系统效能瓶颈的有效途径之一。但是,由于 GaN 功率器件具有开关速度快、栅极击穿电压低、反向续流损耗大等特点,传统高压驱动芯片无法高效可靠地驱动GaN功率器件。因此,研究GaN功率器件专用驱动芯片迫在眉睫。其中,如何提升芯片
学位
功率集成芯片是将功率器件、驱动电路、保护电路、接口电路等集成于同一芯片,通过智能控制实现电能的转换,广泛应用于汽车电子、工业控制、白色家电等领域。横向双扩散金属氧化物半导体场效应管(Lateral Double-diffused MOS,简称LDMOS)因具有高击穿电压,低导通电阻,高输入阻抗及易于集成等优点,成为功率集成芯片中的核心功率器件。为了降低LDMOS器件的导通损耗,提高功率集成芯片的转
学位
近年来,伴随着无线移动通信的飞速发展,用户对数据的传输速率提出了更高的要求,需要更多的频谱资源支撑新业务和高数据速率传输。毫米波无线通信是第五代移动通信系统(5G,Fifth-Generation Mobile Communication Systems)的关键无线技术之一,得到了广泛研究并已开始实际部署。毫米波无线通信同时也是与后5G的研究热点之一。作为毫米波无线通信系统的关键器件,天线与阵列始
学位
电磁超表面可视为二维形态的电磁超材料,由多个亚波长尺度的单元按照周期性或准周期性地排列而成,能实现对电磁特性的灵活调控。相比于三维超材料,超表面拥有体积小、质量轻、造价低、易共形和易集成等优点。传统超表面的电磁参数是连续调控的,因此可被称为“模拟超表面”。2014年,崔铁军教授课题组创新性地提出了“数字编码超表面”的概念,用离散的数字状态表征电磁特性,用相应的编码序列或编码图案调控电磁波,简化了超
自2019 年3月在两会报告中提出建设泛在电力物联网以来,围绕电力系统各环节,广泛应用大数据、云计算、物联网、移动互联、人工智能、区块链、边缘计算等信息技术和智能技术,实现电力系统各环节万物互联、人机交互,打造具有状态全面感知、信息高效处理、应用便捷灵活特征的智慧服务系统。其中,主动配电网作为泛在电力物联网的重要组成部分,近年来得到了迅猛的发展,随着底层设备数量的不断增加,海量的数据信息往返于端侧
学位
高增益天线是现代无线通信系统中不可或缺的关键部件,且被广泛应用于雷达探测、射电天文、高分辨率成像、超高速无线通信等场景中。由于馈电形式简单、剖面低和制作成本低廉等显著优点,高增益平面空馈天线阵列自上世纪末以来便成为天线领域的一大重要研究分支。根据辐射波束的指向,平面空馈天线阵列可分为反射式和透射式天线阵列。当前,在高频段实现宽带、高增益的平面空馈天线阵列仍然存在若干瓶颈问题,尤其是工作于太赫兹频段
随着移动通信数据传输需求量的持续增长以及多媒体技术的高速发展,传统的移动通信系统已经越发无法满足人们对更高的传输速率,更大的用户连接数以及更低时延的需求。目前,为了满足用户更好的体验和社会发展的需要,5G 通信技术成为了研究热点,吸引着世界各国的高度关注。与上一代(4G LTE)移动通信技术相比,5G通信技术提出了更快的数据传输速率,更高的频率利用率,更低的空口时延以及更庞大的系统容量和连接数的要
风速风向传感器作为气象监测与预警的基础性、关键性器件,在高速公路、高速铁路、风力发电、智能电网、船舶航行等领域不可或缺。但是,传统机械风杯式和超声式风速风向传感器体积大、成本高、功耗大,不能满足物联网发展的巨大需求。MEMS风速风向传感器具有微型化、批量化、低功耗等优点,是风速风向传感器的前沿技术方向。东南大学MEMS教育部重点实验室自2000年开始研究MEMS风速风向传感器,已经形成完整的解决方