论文部分内容阅读
随着社会经济、科学技术研究与应用的发展与深入,核技术的应用的范围与实践种类日益的繁多,所需要进行的辐射探测的剂量范围与射线种类也日趋庞杂。以往针对特定类型的探测器所设计的放大器与谱仪可能在应用中存在高计数率下丢失脉冲数据,同时由于其只能获得放射性核素的能量信息,存在无法获得原始脉冲信号携带信息等的局限性,而在某些研究应用场合需要对原始信号的信息进行提取的需求则无法实现,对于上述的工作需求工作场合,需要研制一型在高计数率下亦可以进行核脉冲信号所携带的各类信息分析的可靠核信号分析仪器,应当采用设计的电流脉冲型数字化谱仪来解决当前谱仪的局限。通过高速ADC对原始电流脉冲信号的采集,同时进行数字信号分析处理获得其代表的各类信息。该电流脉冲型数字化谱仪具有高脉冲通过率,高计数通过率,以及同时获得多种原始脉冲信息的特点。本文设计并实现了一型电流脉冲型数字化谱仪,本课题来源于国家重点研发计划项目《高分辨率航空伽马能谱测量及机载成像光谱测量技术》(2017YFC0602100),现阶段的主要研究成果有:1、设计研制了采样率为500MSPS的电流脉冲型的数字化能谱仪硬件系统,包括高速模拟预处理电路、高速数字电路、高速并行实时数字处理逻辑与多轨的低噪声高负载能力的电源系统;2、所研发的能谱仪的数字多道子板面积仅有5cm×8cm,采用六层板设计,包括三个信号层,两个地层,一个电源层,占用空间小,信号完整性好,电源稳定性强,电路散热性能好。其中能谱仪数字多道子板可以以多路复用进行多通道扩展,能谱仪底板采用FPGA控制USB架构,高速的传输单元可以充分发挥数字处理单元的高速并行特性;3、针对电路运行速度高,电流需求大,数据传输距离相对较远的复杂设计特点,在印刷电路板设计完成之后,进行了板级的印刷电路板信号完整性仿真、印刷电路板电源完整性仿真与PCB热设计仿真等措施,辅助改进了初步的设计,使得硬件功能进一步完善,运行更加稳定,数字逻辑电源最大稳定供电电流达到3.5A,输入信号噪声经过测试控制到2.07mV;4、针对高通过率的需要与电流脉冲信号的高速特点,设计了等效运行速度达到500MHz的快慢双通道数字逻辑,其中基于反褶积的快通道进行实时高计数率下粒子事件触发与粒子事件获取,另有基于数字恒比定时慢通道来保证准确的与能量信息的提取;5、针对对原始的电流脉冲信号采集后信息分析的需求,设计了高速实时的脉冲时间信息获取、电流脉冲信号上升时间获取,电流脉冲信号下降时间获取的数字逻辑功能实现模块,可以对于输入的每一个粒子脉冲进行时间信息的提取,同时针对电路耦合探测器输出信号在阻抗不匹配是可能使得输入信号产生抖动的情况,进行了专门的逻辑抗抖动设计,所提取脉冲的时间信息的提取精度达到2ns;6、针对逻辑芯片中逻辑运算量偏大、逻辑运行速率较高、时序较为紧张等特点,通过多种方式采用一些辅助逻辑处理措施与单元保证全能谱仪逻辑的稳定运行。其中对于数字逻辑中多个数字逻辑时钟域协同工作的情况,进行了专门的多种形式的跨时钟域处理,降低数字逻辑中由于竞争冒险而影响逻辑稳定运行的概率;7、针对高速信息的传输,大容量脉冲信息提取后实时分析的需求,开发可扩展底板来进行能谱合成与数据高速传输。最终完成了具有扩展能力的电流脉冲型数字化能谱仪,数字化谱仪基于纯FPGA结构,其中模拟输入带宽为190MHz,输入信号发生器产生的连续信号可以在99.9%的通过率下达到29MHz的脉冲输入频率,采用NaI探测器可以在99Kcps的输入脉冲频率下可以获得95%的活时间与7.69%的137Cs的分辨率,采用LaBr3探测器,测试137Cs的分辨率可以达到3.0%,137Cs符合峰与主峰计数之比降低至0.13%,在五种放射源同时测试时,可以准确通过寻峰获得所放置的所有五种放射源,分析射线能量与输出峰位道址表明谱仪线性度达到0.9997,同时对NaI与LaBr3的电流脉冲信号也可以较为准确获得其信号的上升沿与下降沿时间信息,达到电流脉冲型数字化能谱仪的设计目的。能谱仪可以用于散裂中子源实验中产物的测量与其它高放射性活度工况下的能谱测量,也可用于对于多种闪烁体对于不同能量与种类射线响应的研究实验。