论文部分内容阅读
温度是影响沼气池产气率的关键因素。为保证沼气发酵的正常进行,需要对沼气池采取恰当的保温措施,并配套相应的增温系统。然而目前常用的静态增温方式对内部增温不均,热效率低;动态增温方式存在结构复杂,清洗不便的问题。针对现有沼气池增温技术存在的问题,本文利用流态化技术,用沼液作流化介质,设计了一种新型多相流沼气池增温系统,并通过数值模拟对系统进行分析。本文以沼气池保温层的经济厚度计算为基础,建立了多相流沼气池增温系统的传热计算模型,结合研究地点(四川省甘孜州康定县)的气候条件,进行了传热计算,并比较了中温发酵(35℃)和高温发酵(55℃)下的系统效益。计算发现该沼气池系统的热损失主要来自进出料的热损失。进出料液的热损失与发酵温度、环境温度和发酵周期密切相关;沼气池体散热量和水箱的散热量受到环境温度和发酵温度的影响,与发酵周期无关;中温发酵比高温发酵的系统效益更好。由于多相流沼气池的复杂性,本文通过文献分析并结合多相流沼气池的特点,在建模和求解设置时,对模拟对象做了大量简化,建立了CFD计算模型并划分网格。在FLUENT中验证了模型网格无关性,对比了带保温层的散热边界与绝热边界下温度场的特征,设定了五种进水流速(0.0010m/s、0.0015m/s、0.0020m/s.0.0025m/s、0.0030m/s),进行了流场和温度场的模拟计算,分析了同一进水流速和不同进水流速下的流场、固相分布和温度场特点。在对模拟结果分析时,提出利用基尼系数实现对固相分布均匀度的量化评价。模拟结果显示,带保温层的散热边界条件下,温度分布及变化趋势与绝热条件下的模拟结果相似,但出水管处水温降了约1K,实际运行中,进水温度可调高约1K,以实现内部增温达到35℃;固相体积分率增加,增强了流场的扰动,有利于固相的均匀分布,但固相体积分率高低和均匀度高低并不是单向的正相关,由于内部流场的存在着漩涡和返混,固相分布时刻都在发生变化;沼气池内部的温升比固相膨胀速率快,固态物料主要集中区域的温度几乎趋于一致,达到了均匀增温的效果;随着进水流速的增加,全区增温效果增强,但对于中下部的固相主要分布区域而言,不同流速下的增温效果基本相同;随着进水流速的增加,固相分布均匀度略有降低,热水流出的温度略有增高,但热水流失时间大大缩短,经济性更好,可根据实际需要选择流速。