【摘 要】
:
核电与水电、火电并列为世界能源的三大支柱,在世界能源结构中占有重要地位。作为一种清洁、可靠和高效的能源,核能不仅成为人类可使用的重要能源,也是人类应对能源危机及全球气候变化的重要手段。核电站的长期、安全与稳定运行强烈依赖于结构材料的使役行为。经验表明,腐蚀是导致核电结构材料发生失效的主要原因之一。腐蚀通常仅发生在材料近表面范围内。因此,近表面微观结构对核电材料的腐蚀行为有着重要影响。加工工艺是导致
论文部分内容阅读
核电与水电、火电并列为世界能源的三大支柱,在世界能源结构中占有重要地位。作为一种清洁、可靠和高效的能源,核能不仅成为人类可使用的重要能源,也是人类应对能源危机及全球气候变化的重要手段。核电站的长期、安全与稳定运行强烈依赖于结构材料的使役行为。经验表明,腐蚀是导致核电结构材料发生失效的主要原因之一。腐蚀通常仅发生在材料近表面范围内。因此,近表面微观结构对核电材料的腐蚀行为有着重要影响。加工工艺是导致材料微观结构尤其是近表面微观结构变化的主要原因之一。经过机械加工之后,材料近表面形成加工变质层。如果在加
其他文献
中国南方喀斯特石漠化是喀斯特水文过程造成土壤侵蚀与生态退化的极端现象,石漠化环境的高度异质性与复杂的二元水文结构,限制了对地表与地下水文过程与产流机制的理解,导致对该区水土-养分流失发生机理认知不足。研究石漠化地区水文过程与养分流失机制是水土保持综合治理措施的科学依据,对区域社会经济可持续发展具有重要意义。根据喀斯特地貌发育、水文结构、水文循环、氢氧稳定同位素理论,针对喀斯特石漠化二元结构水文过程
农业氮污染是我国重要的环境问题,施肥过程中未被作物吸收的氮素会随着径流从农田向外迁移,最后汇集于河道和湖泊,极易造成水体富营养化。微生物脱氮是解决农业氮污染的重要途径之一。最近的研究发现在厌氧条件下土壤存在NH_4~+氧化耦合Fe(III)还原过程,即铁氨氧过程(Feammox)。该厌氧脱氮过程的发现改变了以往的氮循环认知,也为氮污染去除开拓了新的方向。但有关Feammox过程在农业氮污染迁移过程
饲料驱动下的水产养殖体系,大约75%的输入性氮并没有被养殖动物所利用吸收,而是随排泄物进入养殖水体中,在环境微生物的氨化作用下产生大量有毒的氨氮,导致鱼类氨氮中毒频繁发生。在漫长的进化过程中,鱼类逐渐分化出多种应答氨氮的生理解毒策略,其中,绝大多数鱼类主要依赖于谷氨酰胺合成和尿素循环。在哺乳类动物中的研究表明,氨氮解毒关键酶缺陷是造成机体氨氮耐受力差异的关键因素,也是开展精准营养的调控的关键靶点。
层状结构的二维(2D)过渡金属化合物,由于其独特的物理化学性质,在电化学储存、光催化、热电、生物传感器等众多领域表现出巨大的应用潜力。特别是作为电极材料,其较大的层间距、比表面积,较高的导电、导热系数和机械强度等优点,使其成为了研究的热点。为了筛选和开发更多优秀过渡金属化合物负极材料,本论文首先利用基于粒子群优化算法的CALYPSO软件包对三种过渡金属(Transition metal,TM=V,
随着新一代电动工具、便携式电子设备功耗需求的增加,高性能锂离子电池(LIBs)的开发越来越受到重视。电极材料作为脱嵌锂离子的宿主,对电池性能起着至关重要的作用。目前阴极材料发展成熟,开发新型高性能阳极材料是进一步提升LIBs性能的有效途径。LIBs的阳极材料以石墨为主,但其理论嵌锂比容量偏低(~372 mAh/g)。而Si和过渡金属氧化物阳极材料大多都具有较高的理论比容量。目前,Si材料具有最高理
材料中的氢泡和氦泡现象通常会导致材料脆化进而威胁到核设施的安全和稳定运行。由于复合材料界面两侧的物理和化学性质存在较大的差异,所以界面往往被认为是腐蚀和断裂的源头。更重要的是,复合材料的界面区域具有一定的俘获氢氦原子的能力,这对散裂中子源和硼中子俘获治疗肿瘤装备(Boron Neutron Capture Therapy,BNCT)的复合靶材来说是一个潜在的隐患。因此,本论文通过第一性原理计算方法
随着大科学工程装置、新能源、现代医疗和交通等领域的快速发展,超导磁体的理论和应用研究正朝着大型化、强磁场和高载流的方向发展,并将带来变革性的技术进步与突破。由于所处的强磁场、大电流和极低温等复杂环境,超导磁体在服役过程中不可避免地会受到强电磁力作用而产生力学变形,同时多场相互作用的耦合行为也会对超导磁体的性能产生显著影响,甚至引发磁体的性能退化和功能失效。因此大型、高场超导磁体的研制及安全稳定运行
将可再生的太阳能转换为电能可以实现可持续性能源产出,这需要高效、稳定且低价的太阳电池来实现。无机材料化学稳定性好,许多无机半导体具有很好的太阳光吸收能力,同时材料的载流子扩散长度也比较长,在太阳电池中有很好的应用前景。发展无机异质结薄膜的溶液法加工技术,对于获得低成本太阳电池十分关键。三元化合物铜铟硫(CuInS2)具有成分毒性小、化学稳定性好、带隙(1.5-1.6 eV)与太阳光谱匹配和吸收系数
LiFePO4具有较高的容量,低廉的价格,高的安全性以及环境友好等优点,被认为是最有应用前景的锂离子电池正极材料。但该材料存在较低的电子电导率,低的锂离子扩散速率和能量密度,以及低温性能不佳等问题,限制了其在锂离子动力电池领域的大范围应用。目前,研究人员大多采用溶剂热法合成高性能的LiFePO4纳米晶,但该方法由于产率低,成本高等原因,不适用于大规模生产。虽然传统的水热合成法具有成本低,产物粒径均