论文部分内容阅读
铝锂合金由于具有密度低、比强度高、低温性能和抗蚀性能好等特点,目前正逐渐取代常规铝合金而广泛应用于制作飞机油箱以及航天飞机的低温贮箱等部件,被认为是一种理想的航空航天结构材料。此外,铝锂合金在汽车、船舶和体育用品等领域中也有一定应用。由于铝锂合金在工业生产中大多作为焊接结构使用,采用常规的焊接方法如MIG、TIG焊等焊接铝锂合金时,易产生接头热影响区软化、焊缝气孔以及结晶裂纹等缺陷,使其应用受到很大限制。真空电子束焊具有能量密度高、热输入小、保护气氛好等特点,采用电子束工艺焊接铝锂合金可获得焊缝晶粒细小、热影响区小、强度系数高的焊接接头。此外,对电子束焊接过程进行数值模拟分析,得到焊接温度场及应力场分布,可为实际焊接工艺优化提供指导。基于此,本文在采用ANSYS有限元分析优化电子束工艺参数的基础上,对航空航天等领域中应用广泛的1420及2090铝锂合金的电子束焊接工艺进行研究,分析电子束流、焊接速度及扫描方式对接头组织和性能的影响,并对接头进行焊后热处理,将焊态下及热处理后接头的组织与性能进行对比,分析热处理后接头中强化相的析出。数值模拟分析结果表明,铝锂合金电子束焊接具有很快的升温速度和降温速度,在焊缝附近的温度梯度较大,采用组合热源所获得焊缝的熔合线形状与实际焊缝十分吻合,呈钉形分布特征。在电子束焊接过程中,熔池前部存在一定压应力,而在焊缝附近存在高值纵向拉应力。采用有限元优化电子束流及焊接速度等工艺参数,当电子束流为I=8mA、焊接速度为V=1000mm·min-1时,接头处于临界熔透状态,且焊缝附近的拉应力峰值大大降低。接头显微组织观察表明,铝锂合金电子束焊接头组织构成以共晶相为主,在晶内分布少量强化相,另外在熔合线附近出现等轴细晶区(EQZ),这与铝锂合金中的Li和Zr元素有关。在焊接过程中采用圆形扫描可增强对熔池的搅拌作用,减少合金元素偏析,使晶界共晶相的尺寸减小且增加晶内共晶相的数量,有利于提高晶界强度。此外,圆形扫描还通过其搅拌作用增加熔池中非均匀形核质点Al3Zr的数量,提高熔池的形核率,细化焊缝组织。直线扫描对熔池的搅拌作用不及圆形扫描,因此对焊缝晶粒的细化作用不佳,焊缝组织中的晶界共晶相有所粗化。对接头进行力学性能测试,结果显示,添加圆形扫描获得接头的抗拉强度较高,直线扫描次之,而未添加扫描的最低。由于圆形扫描可以显著减少焊接过程中合金元素的烧损,有利于保持其强化作用效果,因此获得接头的强度较高。接头显微硬度测试表明,焊缝金属区的硬度低于母材和热影响区,在热影响区出现软化现象。采用圆形扫描获得接头的硬度值相对较高,这是由于圆形扫描可通过电子束的回扫运动熔断已经长大的枝晶,使熔池内部异质形核表面的数量增加,从而细化焊缝组织。接头拉伸断口扫描观察表明,未添加扫描的接头呈脆性沿晶断裂特征,而添加圆形扫描的接头呈塑韧性较好的穿晶断裂特征,在断口表面分布有较多细小的韧窝。将在焊态下和热处理后1420和2090铝锂合金接头的显微组织和力学性能进行对比发现,热处理后两种铝锂合金接头的强度均显著提高,但接头的延伸率有所下降。热处理后接头焊缝中析出了数量较多且尺寸细小的强化相,经接头XRD测试和TEM观察证实,1420焊缝中的强化相以球状δ′相为主,2090焊缝中的强化相以球状δ′相和针状T1相为主,这些强化相析出有利于提高接头的强度。