【摘 要】
:
近年来,随着我国寒区重大工程实践的日益发展―特别是高速铁路(包括快速客运专线建设),在高寒季节冻土区(如哈尔滨地区、吉林延吉地区等)陆续发现具有特殊不良工程性能且大面积分布的膨胀土。寒区膨胀土边坡失稳事例表明,高寒季节区周期性冻融作用成为诱发膨胀土路堑边坡滑坡的主要原因之一。此外,由于我国深季节冻土区高铁建设中新近遇到的深厚残破积膨胀土尚属国际高寒区首次发现,所以目前对这一关键科学问题国内外均无直
【基金项目】
:
国家自然科学基金重点项目《深季节冻土区高铁建设运行下膨胀岩滑坡防控分析理论与评估方法》(批准号:41430634);
论文部分内容阅读
近年来,随着我国寒区重大工程实践的日益发展―特别是高速铁路(包括快速客运专线建设),在高寒季节冻土区(如哈尔滨地区、吉林延吉地区等)陆续发现具有特殊不良工程性能且大面积分布的膨胀土。寒区膨胀土边坡失稳事例表明,高寒季节区周期性冻融作用成为诱发膨胀土路堑边坡滑坡的主要原因之一。此外,由于我国深季节冻土区高铁建设中新近遇到的深厚残破积膨胀土尚属国际高寒区首次发现,所以目前对这一关键科学问题国内外均无直接研究工作,致使季节冻土区膨胀土边坡的变形分析、压力计算、支档设计、稳定评价、滑坡防控等缺乏可靠的理论依据与可行的技术方法,因此“动态设计、经验施工”必然成为这种复杂场地条件下当前高铁路堑边坡建设的主流,定将给高铁建设发展埋下极大的工程与安全隐患。鉴于此,本文以吉林-图们-珲春高铁延吉段膨胀土路堑边坡为研究对象,通过冻融膨胀土细观结构与宏观力学特性室内试验,揭示了膨胀土冻融循环作用下细观结构损伤与宏观力学性能劣化演变规律;基于试验结果建立了可反映体应变和剪应变与球应力和偏应力交叉影响耦合关系的膨胀土冻融弹塑性本构模型,并通过大型有限元软件ABAQUS提供的用户子程序接口,实现了广义塑性理论的双屈服面模型的完全隐式应力积分算法;通过构建三维膨胀土路堑边坡数值模型,实现了该弹塑性本构模型的应用并揭示了影响膨胀土边坡冻融稳定性主要影响因素及冻融变形特征。主要的研究内容、方法与认识简述如下:(1)针对吉图珲高铁延吉段,开展了膨胀土冻融循环作用下压汞试验(MIP)、CT扫描试验,以及三轴固结排水剪切试验。获得了膨胀土冻融作用下细观结构损伤与宏观力学性能劣化演变规律,发现孔径为5~100μm的孔隙受冻融作用影响最大。同时,基于膨胀土冻融CT数,构建了考虑细观结构冻融损伤诱发宏观力学性能劣化的数学表达式。(2)基于饱和膨胀土冻融作用下细观结构与宏观力学性能试验,在殷宗泽提出的双屈服面理论框架基础上,引入广义塑性理论,建立了可反映体应变和剪应变与p、q交叉影响耦合关系的膨胀土冻融弹塑性本构模型。通过与膨胀土三轴试验结果对比,验证了本构模型的正确性。依托ABAQUS数值有限元软件,发展了基于广义塑性理论的双屈服面弹塑性本构模型的UMAT子程序。通过冻融饱和膨胀土三轴试验的试验结果与数值预测比较,验证了UMAT子程序计算结果的有效性、可靠性。(3)基于第3章构建的冻融膨胀土弹塑性本构模型,建立了三维膨胀土路堑边坡―板桩墙体系数值模型并检验了模型的正确性。此外,构建了延吉段膨胀土路堑边坡温度场模型,揭示了膨胀土路堑边坡开挖完成5年后温度场分布规律。基于温度场最大冻深计算结果,阐明了无积雪覆盖情况膨胀土路堑边坡变形特征。考虑冻融裂隙影响,基于第5章冰雪消融入渗模型,揭示了春融期积雪覆盖极端冻融情况下膨胀土边坡变形规律。(4)采用饱和非饱和渗流理论,建立了春季冰雪消融条件下膨胀土路堑边坡―桩板墙体系三维数值模型,研究了不同积雪厚度、日气温变化、昼夜大温差引起的冻融作用下膨胀土边坡渗流场和稳定性变化规律。同时,针对哈佳快速铁路宾西段膨胀土路堑边坡,开展冻融膨胀土边坡变形现场监测,探讨了“1次冻融循环”条件下边坡变形发展规律。在此基础上,结合典型高寒区膨胀土路堑边坡滑塌事例,详细阐述高寒区膨胀土路堑边坡春融期滑塌机制。
其他文献
心力衰竭(简称心衰)和心房颤动(简称房颤)经常合并发生,具有较高的发病率、致残率和死亡率。流行病学研究指出心衰可以促进房颤的发生,但其病理机制尚不完全明确。心衰合并房颤的预后较差,心衰和房颤的动态演化及相互影响很大程度上限制了治疗的长期有效性,因此需要更全面地理解心衰促进房颤发生的机制。生理实验发现心衰会诱导心房发生重构,且其因素众多,而目前生理实验方法很难完成不同物理尺度电生理实验数据的同时观测
锂硫电池由于具有高的理论质量比容量(1675 mAh g-1)和能量密度(2600 Wh kg-1),被认为是最具潜力的下一代二次电池技术之一。然而,锂硫电池的商业化道路上仍面临着诸多挑战,诸如活性物质硫利用率低、循环稳定性差和库伦效率低等,造成这些问题的原因主要是活性物质硫导电性差、充放电过程中严重的穿梭效应和多硫化锂动力学转化迟缓等。针对上述问题,本文对碳基材料进行改性,构建了三种高性能正极宿
主轴轴承作为航空发动机的核心支撑部件,既要满足长寿命和高可靠性需求,还要不断适应持续发展的高速、重载、高温、乏油、断油等极限工况及变速、变载等复杂循环工况。三点接触球轴承作为航空发动机用典型主轴轴承类型,在复杂苛刻工况环境下经常发生疲劳、点蚀、磨损、甚至套圈和保持架断裂等失效,而且多种失效模式并存且相互转换,严重制约轴承延寿和可靠性增长。本文主要从轴承服役工况和结构特点、典型失效机制、结构参数优化
据世界卫生组织2016年统计,心血管病是当今世界上威胁人类健康与生命的头号杀手,在非传染病致死病因中高居首位,远高于癌症、非传染性呼吸系统疾病及糖尿病。绝大多数心血管病致死的直接原因是心源性猝死和中风,而这两者都和心律失常密切相关。虽然人们已经针对心律失常做了大量的研究工作,但对于心律失常的发生机制的认识仍不完善,很大程度上受限于生理实验数据的相互孤立、难于获取和难于分析。近年来,得益于现代分子生
随着通信技术和集成电路技术的发展,Wi-Fi无线网络已经成为社会生产生活实践中不可或缺的组成部分。根据思科的实测数据以及预测数据,Wi-Fi流量在所有IP流量中的占比将从2017年的43%增加到2022年的51%,其中超过79%的数据对延迟有要求。据亚马逊、Google和微软等国际大公司测算,数百毫秒的延迟将给它们带来巨额损失。Wi-Fi接入点与客户端之间20毫秒的延迟将导致页面加载时间被放大到3
凝聚态物理是研究凝聚态物质的物理性质与微观结构以及它们之间关系的学科,寻找新奇物态并理解其物理机制是凝聚态物理的重要工作。近年来,本征二维铁磁、反铁磁和(准)二维量子自旋液体态的发现与研究极大地扩展了凝聚态物理的研究领域。六角蜂窝结构的(准)二维磁性材料是其中的明星材料,其丰富的物理内涵和在超薄磁存储器、自旋电子器件等领域的巨大的应用潜力使其获得了科研人员的广泛关注。拉曼光谱方法是一种无接触、无损
硅陀螺具有体积小、低功耗、低成本、高精度和高可靠性等特点,作为核心器件在战术武器系统中得到了广泛的应用。硅陀螺接口ASIC是实现硅陀螺系统高度集成的关键技术之一。硅陀螺接口ASIC的数字化能够实现硅陀螺的高精度数字修正和补偿,从而有效地提高器件性能。同时接口电路数字化也是传感器技术发展的必由之路,因此硅陀螺数字输出接口ASIC的研究具有重要的意义和应用价值。高精度硅陀螺数字输出接口ASIC研究存在
随着科技的发展,空间目标的位姿测量技术在航空、航天、工业等各领域发挥着举足轻重的作用,而基于光学图像的位姿测量技术则是近景摄影测量、计算机视觉和遥感等领域的研究热点,其具有非接触、设备简单及测量精度高等优点。近年来,随着线阵CCD、CMOS传感器技术的发展和线阵光学图像研究的深入,基于线阵光学图像传感器在空间目标位姿测量的优势得以展现。相比激光、雷达等其他非接触测量方式,其具有不可替代的作用。针对
硫酸盐侵蚀是混凝土结构面临的主要耐久性问题之一。硫酸盐侵蚀引起混凝土结构破坏屡有发生,然而目前硫酸盐侵蚀混凝土的劣化模型尚未完全清晰,硫酸盐侵蚀环境下混凝土结构的耐久性设计方法尚处于定性层次,较难实现耐久性的量化设计。本文以此为出发点,揭示了硫酸盐侵蚀混凝土的劣化机理,建立了硫酸盐侵蚀混凝土的力学性能劣化模型,分析了硫酸盐浓度和温度对硫酸盐侵蚀的影响规律,在细观尺度下研究了硫酸盐侵蚀混凝土的损伤演