论文部分内容阅读
硅微谐振式压力传感器是一种典型的在外界压力作用时通过检测谐振器固有频率的变化来实现压力测量的MEMS器件。器件的工作机理最终导致它比一般扩散硅压力传感器的性能都要优秀,并且工作过程对电漂移、电噪声等电路参数的抗干扰能力很强;此外,谐振式压力传感器为准数字输出,可以轻易的同计算机组件相配进而组成高性能的微型机、电测控系统。因此,硅微谐振式压力传感器可以很好的应用于对精度、稳定性等性能指标严格把关的航空航天、工业监控以及医疗等精密测量领域,在国内外军用及民用领域均有着非常高的市场需求。
因此,本篇论文提出一种基于静电激励/压阻检测的硅微谐振式压力传感器,以面内动平衡的姿态进行振动,为了尽可能减小所设计传感器在工作时可能产生的谐振器高度变化,优化设计谐振器固定端结构,保证工作时谐振器振动系统与同振质量之间互不干扰,二者之间无能量耦合,从而大大增强传感器的稳定性。本文基于单端固支导梁理论的建模,推导谐振器工型梁的频率公式,进一步分析轴向应力与频率变化量的对应关系,对敏感薄膜的小变形、应力传递以及静电激励与压阻拾振这一过程进行理论分析与建模,并对谐振器的固有频率以及动力学特性进行分析,进而对传感器进行优化设计,最终确定传感器参数,根据对传感器数学模型的分析与建立,并利用MEMS有限元仿真软件对传感器在0-120kPa范围以及全范围过压1.5倍下进行模拟分析与仿真验证,初始频率为24.01kHz,传感器灵敏度可达18Hz/kPa。
设计基于绝缘体上硅(SOI)的硅微谐振式压力传感器加工工艺,研究对比几种体微加工工艺,利用硅-硅键合技术实现压力传感器的真空封装,并利用纳米吸气剂与双墙室的封装盖帽结构设计来进一步提高封装寿命。最终通过TSV通孔技术将传感器与电路芯片进行三维混合集成封装及对器件进行了版图设计。
因此,本篇论文提出一种基于静电激励/压阻检测的硅微谐振式压力传感器,以面内动平衡的姿态进行振动,为了尽可能减小所设计传感器在工作时可能产生的谐振器高度变化,优化设计谐振器固定端结构,保证工作时谐振器振动系统与同振质量之间互不干扰,二者之间无能量耦合,从而大大增强传感器的稳定性。本文基于单端固支导梁理论的建模,推导谐振器工型梁的频率公式,进一步分析轴向应力与频率变化量的对应关系,对敏感薄膜的小变形、应力传递以及静电激励与压阻拾振这一过程进行理论分析与建模,并对谐振器的固有频率以及动力学特性进行分析,进而对传感器进行优化设计,最终确定传感器参数,根据对传感器数学模型的分析与建立,并利用MEMS有限元仿真软件对传感器在0-120kPa范围以及全范围过压1.5倍下进行模拟分析与仿真验证,初始频率为24.01kHz,传感器灵敏度可达18Hz/kPa。
设计基于绝缘体上硅(SOI)的硅微谐振式压力传感器加工工艺,研究对比几种体微加工工艺,利用硅-硅键合技术实现压力传感器的真空封装,并利用纳米吸气剂与双墙室的封装盖帽结构设计来进一步提高封装寿命。最终通过TSV通孔技术将传感器与电路芯片进行三维混合集成封装及对器件进行了版图设计。