缺失角度的锥束计算机断层扫描重建

来源 :东南大学 | 被引量 : 0次 | 上传用户:wyk3601
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
X射线计算机断层成像(Computed Tomography,CT)作为一种高清晰度的无损检测方式,近年来广泛地应用于医学检查和工业检测等领域。随着CT成像技术的广泛应用,成像过程中一些问题引起了专业人员的注意。由于操作人员的失误、成像仪器的故障、病患的体动等各种原因,CT成像系统的检测设备不能接收到完整的X射线投影,导致常规办法重建的图像被严重的伪影所污染。这个问题被称作缺失角度的锥束计算机断层扫描(Cone Beam Computed Tomography,CBCT)重建问题,本项目中将该问题分成两个部分来讨论:第一部分主要讨论稀疏角的CBCT重建问题,这是探测器欠采样问题。第二部分主要讨论有限角的CBCT重建问题,这是由于探测器采集到的投影信息在连续的一段区域丢失导致。解决以上两个问题比较主流的方法包括投影域前处理技术、迭代重建技术和图像域后处理技术。重建的目标是修复缺失的投影或者图像信息,使重建图像能够达到或接近全角度重建的高质量图像。常规的图像处理方法在解决缺失角CBCT重建问题时容易丢失组织细节。本项目结合生成对抗网络(Generative Adversarial Nets,GANs)的最新成果,对稀疏角伪影预测的复杂问题进行非线性建模拟合,同时通过训练多步的网络结构,优化有限角投影重建图像。本项目分为以下两个部分:第一,在Wasserstein GANs(WGAN)损失函数的基础上增加了一个基于判别器梯度的非负梯度惩罚项(WGAN-GP)稳定判别器的梯度下降过程。引入U-Net和自定义的特征提取网络分别作为生成器和判别器,预测稀疏角重建问题中的伪影分布。该方法在提取伪影特征的同时最大限度的保存图像整体结构和恢复组织细节,能够比主流的端到端深度学习网络获得更好的重建效果。第二,在WGAN-GP的基础上,考虑到有限角滤波反投影重建图像伪影更加严重,结合数据集本身的特点,构建了一个三步重建网络解决有限角投影重建问题。第一步使用二维逐切片训练的WGAN-GP对图像的每个切片进行去伪影处理,恢复图像的整体结构;第二步进行解析操作,矫正重建图像中衰减较大的部位,同时也会引入一些模糊;第三步使用三维WGAN-GP处理上一步的结果,能够考虑到图像的层间相关性,同时抑制第二步中引入的模糊,进一步恢复图像细节,同时增强了组织间的对比度。本项目使用了来自中国江苏省人民医院口腔科的锥束CT进行实验,结果表明提出的方法和主流的重建方法相比,能够取得显著的性能提升。
其他文献
在软件工程领域,软件开发的质量、效率和成本是软件开发过程中关注的三个核心问题。进入二十一世纪以来,随着互联网的普及,信息技术呈现爆炸性地增长,软件系统的规模和复杂性也在不断增加,软件开发的效率问题也越来越受到关注。为了提高开发的效率,许多软件开发的技术被陆续提出,开发者们希望通过代码搜索等技术手段实现高效的代码重用。因此代码搜索技术的研究有着重要的意义。然而,现有的代码搜索技术在表示代码时并不全面
随着开发语言和各种软件社区的发展,API的数量急剧上升。为了降低API的使用难度,提高API使用效率,研究人员提出了很多种API推荐方法,这些推荐方法可以帮助编程人员更加高效地使用API。随着推荐技术的不断增加,选择合适的推荐方法对编程人员来说尤为重要。API推荐结果的评估可以为编程人员选择推荐技术提供依据,目前已有的评估方法研究较少,且主要关注于推荐结果的正确性,缺乏对推荐结果质量的关注,难以完
数据世系用于描述数据产生、演化流程和数据源信息,在数据质量评估、数据溯源、信息安全领域发挥着日益重要的作用。世系工作流是数据世系的主要描述结构,随着人们对数据质量、溯源要求的日益提高,对世系工作流进行共享的需求愈加迫切,世系工作流中包含数据产生关键操作、流程等敏感信息,对其进行共享发布不可避免地带来隐私泄露问题。本文针对已有世系工作流结构隐私保护方法存在的不足,研究能够有效维持工作流时序约束和拓扑
视频拼接作为实现全景视频的重要手段,在移动设备拍摄能力越来越强的时代里,能够将移动设备拍摄的视频轻松拼接成稳定的具有大视野的全景视频可以很大程度上增强人们的影音使用体验。但是由于移动设备不是固定的,拍摄出的视频天然的会带有剧烈的抖动以及较大的视差,这些因素都会影响最后拼接的效果。本文提出了一个适合手持设备拍摄的带有抖动的视频拼接的联合视频防抖和视频拼接的拼接算法,该算法可以有效的去除抖动、处理重影
近年来,作为一种新型的软件开发方式,群智化软件开发已经受到了学术界和工业界的广泛关注。相比于传统的软件开发,群智化软件开发可以最大限度地利用世界各地的开发人员资源来完成复杂的开发任务,能够有效降低开发成本,提高开发效率。但是,由于群智化平台中任务众多且复杂,不准确的任务匹配会影响任务完成的进度和质量,因此,研究开发者和任务的匹配问题对于群智化软件开发模式来说非常重要。推荐技术作为传统领域解决信息过
文本生成图像(Text-to-image Generation)旨在基于自然语言描述的文本生成相关图像,实现从文本模态到图像模态的转化,并保持语义。文本生成图像对于新闻自动配图,用户需求画像等图像生成应用具有重要意义。文本生成图像研究,作为一个交叉问题,涉及到自然语言理解和图像生成两个热门研究领域。该问题的研究也为文本嵌入和生成模型技术提供支撑。当前的文本描述通常是一个描述物体属性的说明性语句,比
随着互联网的迅速普及和数字信息的爆炸式增长,各种海量化、碎片化的内容不断涌现,如何从这些异构驳杂的数据中检索有效信息对于搜索引擎挑战巨大。以网页链接为中心的传统搜索引擎通过关键字匹配的方式从互联网中检索信息,然后返回给用户相关链接。这种方式不能准确理解用户搜索意图,且返回的结果过于单一,包含的语义信息不够丰富,需要用户做多次检索。为了改善这种搜索模式的弊端,基于知识的搜索引擎已引起了业界的广泛关注
临床路径(Clinical Pathway)是针对某种特定疾病建立的标准化诊疗模式,旨在规范临床诊疗流程。头痛是一种较为常见的神经内科临床症状,然而我国目前面临着头痛相关医学人才匮乏以及头痛临床诊断路径不够完善等问题。现阶段,国内头痛相关临床路径主要参考国际头痛疾患分类(ICHD)。然而由于其涵盖头痛种类多,部分诊断标准差异小,更新换代等因素,增加了医生在临床中完整正确运用ICHD的难度。基于IC
近年来,随着移动互联网的快速发展以及“互联网+”国家战略的深入实施,电子商务迎来了高速发展的黄金时代,针对电商平台用户评论文本的情感信息抽取技术逐渐成为自然语言处理领域中的研究热点。已有的研究主要针对非交互式的传统用户评论文本开展评价属性(简称“属性”)抽取研究。与以往研究不同,本文针对一种新颖的问答式评论文本开展属性抽取方法研究。该新型问答式评论文本中,答案通常是由随机邀请有过购买行为的用户提供
应用程序编程接口(API)技术为程序开发提供了便利,为针对复杂问题的成熟解决方案拓展了复用,被认为是解决软件危机,提高软件开发质量和效率的现实有效途径。在应用API进行开发时,梳理可用API的成本较为高昂,通常需要API推荐技术来辅助。而基于上下文的API推荐技术是其中最广泛使用的方法之一,使用历史项目代码和代码上下文匹配来推荐目标API方法,以提高推荐精确性和成功率,以及软件开发的效率和质量。传