符号图的模流

来源 :安徽大学 | 被引量 : 0次 | 上传用户:dvdwen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为攻克四色猜想,Tutte在1954年提出了整数流理论.此后,整数流理论成为图论一个重要的研究分支.上世纪五十年代,Tutte证明了普通图存在处处非零的k-流当且仅当它存在处处非零的模k-流.然而,这种等价关系在符号图上并不成立.因此,研究者期望通过研究符号图的模流,揭示符号模流与符号整数流之间的关系,从而达到研究符号整数流的目的.本文主要讨论了符号图上模流的几个问题,给出了符号图上的模流多项式及其基本性质,确定了一类图的最小模流值,证明了每一个有模流的符号图存在处处非零的模6-流,并给出了Bouchet符号6-流猜想的一个等价命题.本文的组织结构如下:第一章首先介绍了符号流理论的研究背景,常用的概念和术语,再介绍了本文的研究问题,研究进展及主要结果.第二章首先介绍了符号图上流的基本性质,以及一个重要的概念转换操作等价及其性质.其次,我们定义了符号图模流多项式,并讨论了其基本性质.最后,确定了一类特殊图的最小模流值.第三章给出了符号图存在处处非零模流的三个等价命题,再证明了每一个有模流的符号图存在处处非零的模6-流,最后给出Bouchet符号6-流猜想的一个等价命题.
其他文献
本文首先引入并研究一类渐近伪压缩型半群和隐式迭代序列,在Banach空间中证明了该隐式迭代序列强收敛到渐近伪压缩型半群公共不动点定理,从而将相关文献中的结果推广到了渐近
设n ≥ 6为正整数,Tn4 =(V,E4),在本文中我们对p ≥ n ≥ 10给出了 ex(p;Tn4)的精确公式,这里ex(p;L)表示不含L作为子图的p阶图的最多边数.设p =κ(n-1)+ r,其中κ∈ {1,2,3,...},r
从数学角度来看,在非线性偏微分方程中,孤子是一类特殊的解.伴随着孤立子理论的发展,寻找非线性偏微分方程的孤波解是孤子理论中的一个有意义的工作,具有重要的理论与实际应
生存分析是从医学、生物学、经济学等学科研究的大量实际问题中提取出来,并侧重于解决生存数据的统计推断问题的一门学科。生存分析的理论和应用研究一直以来都受到社会各界
生存分析最初起源于现代医学,工程等科学研究中的实际问题,是数理统计研究中的一个重要分支。自二十世纪七十年代中期以来,生存分析迅速发展,它着重对删失数据进行研究。生存
自从ThOms提出突变理论后,它被广泛应用于各个方面,也包括气象方面。其中气象的影响因素是多重的,即用数值形式表示气象的变幻时,为一个多维的时间序列,而现有的检测方法只能
图G的一个k-无圈边染色是满足任意两种颜色类的导出子图是森林的G的一个k-正常边染色,G的无圈边色数是使G存在无圈边染色最少的颜色数,记为a’(G).G的一个k-孪生边染色σ是指
除海洋外,陆地表面是气候系统中的另一重要下边界,对大气和气候变化也有着显著的影响。许多研究表明前期陆地下垫面状态异常尤其是地表水状态(土壤湿度及雪盖)异常与后期天气
随着网络技术的发展,到了今天,复杂网络已随处可见。而在实际的复杂网络中,最多见的就是无标度网络。无标度网络由于其自身的演化过程造成其拓扑结构有一定的特殊性。在网络
本学位论文主要对带有时滞脉冲的混杂随机微分系统的指数稳定性与脉冲镇定性展开研究,基于平均脉冲区间方法,Lyapunov函数,Razuminkhin型方法以及一些随机分析的技巧研究了带