论文部分内容阅读
泡沫炭具有独特的三维网状内部结构,呈现出密度小、孔隙率高、耐高温、耐腐蚀、易加工等突出性能,是近年来隔热、导热、吸波、导电、传质材料等领域的研究热点。本论文针对泡沫炭的结构控制、复合增强以及应用方面存在的共性科学难题或研究空白点,以中间相沥青为原料,采用自发泡法和超临界发泡法制得不同孔结构的泡沫炭,系统归纳了中间相沥青的物化性质、自发泡条件、超临界发泡条件与孔结构(孔形、孔径、韧带结构、开/闭孔)及材料力学性能之间的内在关系,分别阐明了自发泡机理和超临界发泡机理,揭示了石墨化泡沫炭微裂纹的产生共性机制,并探讨了泡沫炭在气-固催化反应以及生物污水处理中等新型领域的应用可能。本论文针对泡沫炭的孔结构控制和自发泡、超临界发泡机理以及石墨化泡沫炭微裂纹的产生机制,形成了较具特色的研究,并得出如下主要结论:1)以中间相沥青为原料,采用自发泡技术,制得结构可控的中大孔泡沫炭,系统考察了中间相沥青的性质、自发泡条件、炭化、石墨化工艺对泡沫炭孔结构的影响。通过对中间相沥青进行预氧化,结合沥青的簇组成及其粘-温特性,推断自发泡机理如下:在发泡温度下,中间相沥青中的轻组分或裂解气将优先在喹啉不溶物(QI组分)处成核、聚集和膨胀,然后形成泡孔;在升温至发泡温度的过程中,当沥青内部由裂解产生气体的压力高于外界压力时,部分气体在内外压差的作用下从沥青内部逸出,导致泡沫炭的开孔率较高。2)以甲苯为发泡剂,采用超临界发泡制得孔径为100-200μm的泡沫炭,并结合不同工艺条件对泡沫炭的结构进行了有效调控,推断发泡机理如下:在超临界条件下,当甲苯和中间相沥青形成均相体系后,在快速卸压过程中,溶解在中间相沥青中的甲苯处于过饱和状态,进而与熔融沥青分相:由于轻组分/QI界面处的Gibbs自由能比沥青主体相要低,于是甲苯则优先在轻组分/QI界面处成核,并逐渐扩散、聚集和膨胀,最终形成泡孔。3)通过调控不同程度萃取的中间相沥青的簇组成,考察不同石墨化泡沫炭微裂纹结构,推断其产生机制如下:泡沫炭在石墨化过程中,由于孔壁及韧带处存在热应力梯度分布,导致热应力的释放速度不同,进而产生微裂纹。其中,微裂纹的产生及其形状与石墨化过程中产生的热应力、热应力的释放速度和碳基体的物理性质有关。通过调节中间相沥青的族组成可以有效控制石墨化泡沫炭微裂纹的产生。4)协同超声和磁力搅拌分散功效,实现了CNTs在中间相沥青中的均匀分散,并成功自发泡制备出CNT增强的泡沫炭。当CNTs分散量为3.5wt.%时,所制泡沫炭孔结构的均一性最好,压缩强度达4.7MPa。5)泡沫炭经HNO3适当氧化后,孔壁表面形成新的中孔、大孔,并有效的改进了其界面的亲水性,从而有利于金属催化剂的均匀分散;通过化学气相沉积法,可以在改性泡沫炭表面均匀生长一层致密的纳米碳纤维,在不影响泡沫炭的孔结构和强度的同时,大大增强了材料的有效界面,从而有利于MnOx-CeO2纳米催化剂在泡沫炭界面的高度分散。MnOx-CeO2/CNFs-泡沫炭催化剂具有极高的NO的催化脱除能力,在180-220℃范围内,对NO的脱硝效率可以达到90%以上。6)泡沫炭经过HNO3氧化、水洗、生物接种、生物驯化之后,成功的在其表面生长出致密的高活性生物膜。生物菌种类和数量较多,对多种污水成分具有一定的普适性降解效果。其中,生物泡沫炭对COD、BOD和NH3-N等典型污染物降解率分别高达81%、81%和75%,明显优越于生物陶瓷颗粒,揭示了泡沫炭良好的生物相容性和作为微生物固定化载体的应用前景。