论文部分内容阅读
内燃机气缸盖冷却水腔的良好冷却能力对内燃机的可靠性、经济性和动力性至关重要。冷却水腔内的传热方式主要以强迫对流换热为主;但在温度最高、热流密度极大的气缸盖鼻梁区,传热方式主要为沸腾换热。近年来,鉴于纳米流体良好的传热性能,研究者们试图将其应用于冷却水腔中,以达到强化传热的目的。到目前为止,纳米流体对强迫对流换热的强化效果已经被广泛地报道及证实,但是关于纳米流体沸腾换热的研究还没有统一的结论,纳米流体是否能够强化沸腾换热仍然存在着矛盾和争议,而传统的研究方法大多从宏观现象上推测纳米流体影响沸腾换热的机理,缺少理论依据。因此,需要采用有效的方法,从更深层次上探讨纳米流体影响沸腾换热的物理机制。分子动力学(MD)方法可以从微观角度准确地描述纳米流体的结构特点,它能够将影响纳米流体沸腾换热的因素离散开来,逐一进行研究,从而有效地揭示纳米流体的沸腾换热特性,为纳米流体在内燃机强化传热中的应用奠定理论基础。
本文采用MD方法,首先将基础液中悬浮和沉积于壁面的纳米颗粒离散,在池沸腾状态下,分别研究悬浮和沉积的纳米颗粒影响沸腾换热的物理机制;随后将悬浮和沉积的纳米颗粒整体考虑,研究纳米流体的池沸腾特性,接着参考内燃机冷却水腔鼻梁区的强迫对流过冷沸腾过程,研究纳米流体的流动沸腾特性;最后揭示纳米流体强化沸腾换热的物理机制,并进一步探讨其在内燃机冷却水腔中应用的可行性。主要研究内容如下:
(1)在池沸腾状态下,研究了悬浮纳米颗粒对沸腾换热的影响。分别建立了研究悬浮远壁和悬浮近壁纳米颗粒影响沸腾换热特性的计算模型,考虑了两种加热表面(光滑和非平),分别研究了爆炸沸腾和蒸发过程中远壁和近壁纳米颗粒对换热特性的影响,随后考察了加热温度和纳米颗粒种类、尺寸及浓度对沸腾换热的影响规律。研究发现,悬浮纳米颗粒强化了沸腾换热,且近壁纳米颗粒的强化作用要略大于远壁纳米颗粒。远壁纳米颗粒跟随流体运动,其微运动主要对蒸发阶段流体内部的热量传递具有强化作用;而近壁纳米颗粒则被吸附在壁面未蒸发的液体薄膜上,不跟随流体运动,但其温度能够迅速达到壁面加热温度,成为新的加热源,从而向流体传递热量。
(2)在池沸腾状态下,研究了壁面沉积纳米颗粒对沸腾换热的影响,建立了研究沉积纳米颗粒影响沸腾换热特性的计算模型。首先从接触角入手,发现沉积于壁面的纳米颗粒可以显著地减小壁面上液滴的接触角,初步验证了沉积纳米颗粒对壁面润湿性产生了一定的影响。随后研究了沉积纳米颗粒对沸腾换热的影响,发现沉积纳米颗粒可以缩短爆炸沸腾开始时间,使得气泡成核时间提前,增强了近壁处的热对流;同时,沉积颗粒增强了壁面润湿性及固液界面间的振动热匹配度,从而强化了壁面与流体间的热量传递效率。此外,纳米颗粒表面的润湿性受到表面活性剂的影响会发生一定变化,研究发现,随着沉积颗粒表面润湿性的增强,沉积颗粒对沸腾换热的强化作用增大。
(3)研究了纳米流体的沸腾换热特性,主要包括饱和池沸腾、饱和流动沸腾和过冷流动沸腾。在饱和池沸腾及饱和流动沸腾中,考察了流速和加热温度对沸腾换热的影响。结果表明:与基础流体相比,纳米流体开始爆炸沸腾的时间更早,热流密度更大;随着加热温度的升高,纳米流体对沸腾换热的强化作用增强,并且流动沸腾中纳米流体的强化效果要大于池沸腾中;此外,随着加热温度的升高,流速对流动沸腾换热的影响越来越微弱,但适当的增大流速,可以在一定程度上避免近壁纳米颗粒的沉积。由于内燃机冷却水腔鼻梁区的传热方式为强迫对流过冷沸腾,因此研究了纳米流体的过冷流动沸腾特性。以水作为基础液,参考鼻梁区的温度,进一步扩大了加热温度研究范围,发现随着加热温度的升高,热流密度达到了CHF,相比于基础流体,纳米流体的CHF增强了约70%。而若要将纳米流体应用于内燃机中,则必须确保纳米流体可以强化沸腾换热,这主要取决于壁面纳米颗粒沉积层导热热阻对传热的削弱作用和其他强化作用之间的相对大小。研究发现,在内燃机冷却水腔中,受到基础液流速和表面活性剂的影响,纳米颗粒不会不断地沉积,沉积层厚度不会持续增加。因此,与其他强化作用相比,沉积层导热热阻对传热的削弱作用在总换热量中占比较小,使得纳米流体能够强化冷却水腔中的沸腾换热。因此,将纳米流体应用于内燃机冷却水腔中是可行的。
本文采用MD方法,首先将基础液中悬浮和沉积于壁面的纳米颗粒离散,在池沸腾状态下,分别研究悬浮和沉积的纳米颗粒影响沸腾换热的物理机制;随后将悬浮和沉积的纳米颗粒整体考虑,研究纳米流体的池沸腾特性,接着参考内燃机冷却水腔鼻梁区的强迫对流过冷沸腾过程,研究纳米流体的流动沸腾特性;最后揭示纳米流体强化沸腾换热的物理机制,并进一步探讨其在内燃机冷却水腔中应用的可行性。主要研究内容如下:
(1)在池沸腾状态下,研究了悬浮纳米颗粒对沸腾换热的影响。分别建立了研究悬浮远壁和悬浮近壁纳米颗粒影响沸腾换热特性的计算模型,考虑了两种加热表面(光滑和非平),分别研究了爆炸沸腾和蒸发过程中远壁和近壁纳米颗粒对换热特性的影响,随后考察了加热温度和纳米颗粒种类、尺寸及浓度对沸腾换热的影响规律。研究发现,悬浮纳米颗粒强化了沸腾换热,且近壁纳米颗粒的强化作用要略大于远壁纳米颗粒。远壁纳米颗粒跟随流体运动,其微运动主要对蒸发阶段流体内部的热量传递具有强化作用;而近壁纳米颗粒则被吸附在壁面未蒸发的液体薄膜上,不跟随流体运动,但其温度能够迅速达到壁面加热温度,成为新的加热源,从而向流体传递热量。
(2)在池沸腾状态下,研究了壁面沉积纳米颗粒对沸腾换热的影响,建立了研究沉积纳米颗粒影响沸腾换热特性的计算模型。首先从接触角入手,发现沉积于壁面的纳米颗粒可以显著地减小壁面上液滴的接触角,初步验证了沉积纳米颗粒对壁面润湿性产生了一定的影响。随后研究了沉积纳米颗粒对沸腾换热的影响,发现沉积纳米颗粒可以缩短爆炸沸腾开始时间,使得气泡成核时间提前,增强了近壁处的热对流;同时,沉积颗粒增强了壁面润湿性及固液界面间的振动热匹配度,从而强化了壁面与流体间的热量传递效率。此外,纳米颗粒表面的润湿性受到表面活性剂的影响会发生一定变化,研究发现,随着沉积颗粒表面润湿性的增强,沉积颗粒对沸腾换热的强化作用增大。
(3)研究了纳米流体的沸腾换热特性,主要包括饱和池沸腾、饱和流动沸腾和过冷流动沸腾。在饱和池沸腾及饱和流动沸腾中,考察了流速和加热温度对沸腾换热的影响。结果表明:与基础流体相比,纳米流体开始爆炸沸腾的时间更早,热流密度更大;随着加热温度的升高,纳米流体对沸腾换热的强化作用增强,并且流动沸腾中纳米流体的强化效果要大于池沸腾中;此外,随着加热温度的升高,流速对流动沸腾换热的影响越来越微弱,但适当的增大流速,可以在一定程度上避免近壁纳米颗粒的沉积。由于内燃机冷却水腔鼻梁区的传热方式为强迫对流过冷沸腾,因此研究了纳米流体的过冷流动沸腾特性。以水作为基础液,参考鼻梁区的温度,进一步扩大了加热温度研究范围,发现随着加热温度的升高,热流密度达到了CHF,相比于基础流体,纳米流体的CHF增强了约70%。而若要将纳米流体应用于内燃机中,则必须确保纳米流体可以强化沸腾换热,这主要取决于壁面纳米颗粒沉积层导热热阻对传热的削弱作用和其他强化作用之间的相对大小。研究发现,在内燃机冷却水腔中,受到基础液流速和表面活性剂的影响,纳米颗粒不会不断地沉积,沉积层厚度不会持续增加。因此,与其他强化作用相比,沉积层导热热阻对传热的削弱作用在总换热量中占比较小,使得纳米流体能够强化冷却水腔中的沸腾换热。因此,将纳米流体应用于内燃机冷却水腔中是可行的。