在模糊赋范线性空间上讨论Jensen-三次函数方程的稳定性

来源 :青岛大学 | 被引量 : 0次 | 上传用户:luo_yanjiang1980
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文首先介绍了模糊赋范线性空间的概念和基本性质,利用直接法证明了上述Jensen-三次函数方程在模糊赋范线性空间中的HUR稳定性。然后利用模糊赋范线性空间的概念和基本性质,基于不动点定理,利用不动点方法证明Jensen-三次函数方程在模糊赋范线性空间中的HUR稳定性。论文的第二部分介绍了Felbin类型的模糊赋范线性空间的概念和基本性质,然后利用直接法和不动点法研究Jensen-三次函数方程在Felbin类型的模糊赋范线性空间中的HUR稳定性。
其他文献
本文研究的图是有限,简单,无向图.设G=(V,E)是一个图,k是一个正整数.若存在一个映射φ:V→{1,2,…,k}满足:对任意xy∈E,都有φ(x)≠φ(y),则称φ是G的一个k-染色,此时我们称G是k-可染的
学位
本文研究的问题与如下的n维广义Hamilton系统相关:(x)i=n∑j=1Jij(x)(a)jH(x),i=1,…,n.(1)或者简写为向量形式(x)=J(x)▽H(x),J(x)=(Jij(x)).其中,H(x)称为系统(1)的Hamilton量,
近代泛函分析学科中一个重要的分支就是Banach空间几何理论.KIRK于1965年证明了不动点在有正规结构自反的Banach空间上的存在性问题.随后,数学家们也相继利用Banach空间几何性
为探讨元胡GAP标准化栽培研究中元胡的水肥需求。采用对比实验方法和正交实验设计,认为元胡标准化栽培中浇灌次数为2次,N、P、K与有机肥的最佳配比为15:15:15:4000(kg/亩),每
极值问题是数学中一个重要的研究课题,它在代数,分析,组合,概率及计算数学等领域有着十分重要的应用.组合学中的极值问题十分丰富,研究内容包括单峰性,对数凹性,对数凸性,双峰性,PF性