【摘 要】
:
在医疗卫生和工业生产的相关领域,灭活是消除致病菌影响的常规方法。然而,灭活后的死亡细菌往往无法得到完整清除,会继续残留在材料表面上,并对表面附近活细菌的运动与粘附行为产生持续影响。本课题组以往的研究表明,生长在死亡的铜绿假单胞菌(Pseudomonas aeruginosa,PAO1)上的生物被膜更加柔软,菌群数目更少。然而,死亡细菌对表面附着的生物被膜形成之前的游离态细菌造成的影响及其相关机理并
论文部分内容阅读
在医疗卫生和工业生产的相关领域,灭活是消除致病菌影响的常规方法。然而,灭活后的死亡细菌往往无法得到完整清除,会继续残留在材料表面上,并对表面附近活细菌的运动与粘附行为产生持续影响。本课题组以往的研究表明,生长在死亡的铜绿假单胞菌(Pseudomonas aeruginosa,PAO1)上的生物被膜更加柔软,菌群数目更少。然而,死亡细菌对表面附着的生物被膜形成之前的游离态细菌造成的影响及其相关机理并不清楚。在本论文中,我们利用数字全息显微镜(digital holographic microscopy,DHM)对沉积死细菌层附近的PAO1的三维行为和空间分布情况进行了实时追踪;同时,结合游离态细菌的RNA-seq和死亡细菌的代谢组学分析,本论文揭示了细菌运动及粘附行为变化的分子基础。主要内容如下:(1)基于DHM,我们追踪了在紫外灭活后的死亡的PAO1表面上的游离态活菌的三维行为,获知了死活菌之间的相互作用。首先,我们使用紫外杀菌方式对PAO1进行灭活处理,制备了均匀沉积于表面的死细菌层,利用DHM实时观察PAO1在此表面与活细菌层表面上的3D运动行为和表面聚集情况。我们发现,相对于活细菌层表面上的游离态细菌,死细菌沉积表面附近的细菌在近表面密度更小,三维运动速度(V3D)下降,同时伴随着细菌发生“轻弹”(flick)行为的频率增加。这表明游离态细菌通过更频繁的主动响应行为flick以远离死细菌表面。另一层面上,表面上死细菌鞭毛的固定与活细菌鞭毛的旋转引起的近界面流体力学变化进一步增大了PAO1在活细菌表面的聚集程度。上述因素共同抑制了细菌在死细菌表面的聚集,并且激活了游离态细菌的适应性防御机制。(2)我们对运动在死细菌层表面上的游离态PAO1进行RNA-seq,并利用基于LC-MS的代谢组学技术分析活细菌表面与死亡细菌表面的差异代谢物与代谢通路。RNA-seq的转录组数据揭示了游离态PAO1的dgc E和dgc M基因的上调抑制了其在死细菌层附近的运动;与此同时,死细菌的存在上调了与PAO1毒力因子密切相关的基因hcp1,clp V1和vgr G1。此外,死细菌与活细菌显著富集的差异代谢途径表明死细菌表面代谢物琥珀酸的增加和L-谷氨酸的减少促进了游离态细菌的空间扩散。综上所述,基于DHM对死细菌层表面上的游离态细菌的3D实时追踪,并结合RNA-seq和代谢组学分析技术,我们探讨了死亡铜绿假单胞菌对游离态活菌三维运动以及粘附行为的影响,并揭示了背后的分子机制。我们的研究结果表明,死细菌表面上的游离态Pseudomonas aeruginosa更为分散,其原因是由于表面物理性质的变化以及差异胞外代谢物会引起细菌信号转导通路的改变,进而启动PAO1的适应性响应机制调整其运动与后续的粘附行为。这些发现对于开发新型防污涂层和抗菌表面具有重要的借鉴意义。
其他文献
第五代通信系统(5G)的快速发展顺应了人们自古以来对信息快速、高效传输的追求。当然5G时代的到来给移动通信技术带来挑战,基站天线作为移动通信系统的“耳目”也需要相应地升级。5G基站天线采用大规模阵列天线来实现Massive MIMO技术和波束赋形技术,进而大大的提升通信速率。然而,应用于5G基站中的大规模阵列大大增加了天线单元数量,同时也增加了天线阵列的体积、重量以及成本。另一方面,5G大规模阵列
TiN纳米相增强Ti基复合材料结合了Ti基体的韧性和陶瓷增强相较高的强度和硬度,在航空航天、汽车制造领域具有非常诱人的发展前景。近年来SLM成形技术在高性能器件领域得到快速发展和广泛应用,可用于快速生产复杂高密度的Ti基复合材料零件。为了解决Ti基复合材料中增强相和基体界面结合性差、润湿性差及增强体的团聚行为等问题,比较有效的增强相引入方式为原位合成法。基于等离子球磨在实现Ti在N2气氛下的原位气
磷化氢在自然界中的赋存具有多样性和广泛性的特征,决定了磷化氢作为磷生物地球化学循环的一部分起着重要的作用。此外,磷化氢被视为生物信号气体探究宇宙未知生命。因此,探究自然界中磷化氢的来源问题具有重要的意义。磷化氢的非生物来源已获得深刻认知,而对磷化氢生物来源的认知存在很多的争议。迄今为止,微生物产生磷化氢的机理仍然是个谜。本研究通过在厌氧消化过程中富集产磷化氢的微生物群落,分析代谢产物与磷化氢的关系
生态兴则文明兴,生态文明建设是事关中华民族永续发展的根本大计。坚持和发展什么样的中国特色社会主义生态文明、怎样坚持和发展中国特色社会主义生态文明,这是新时代赋予我们的重大课题。人类面临的生态环境危机根源于“制度危机”,生态文明建设的关键是制度体系建设。生态文明是一场涉及生产方式、生活方式的根本性变革,要实现这样的变革,离不开制度和法治的保障。社会主义生态文明是一种新的文明形态,它负载时代价值和制度
本研究用反溶剂法制备了V型结晶淀粉,探究了原淀粉与V型结晶淀粉之间理化性质的差异与联系,通过干法将V型结晶淀粉与月桂酸进行复合,探究不同直链淀粉含量淀粉和不同复合温度下淀粉脂质复合物的乳化性质,通过设置不同淀粉-脂质复合物添加量和油相体积分数,以期寻找淀粉-脂质复合物乳液的最佳应用条件,为淀粉-脂质复合物在食品及化工领域的应用提供理论基础。以五种直链淀粉含量不同的玉米淀粉(WMS、NMS、HA5、
葡萄籽原花青素(Grape seed proanthocyanidins,GSP)是一种具有广谱生物活性的天然多酚类物质,由于GSP的结构中存在大量不稳定的酚羟基,导致其在高温、碱性pH、金属离子、光照等作用下容易降解,限制了其应用范围。本文通过制备甜菜碱溶性多糖(ASP)和乳清分离蛋白(WPI)交联复合物,并以此为乳化剂构建W/O/W双重乳液体系对GSP进行负载,以提高GSP的稳定性和生物利用度
电致变色是指材料在通电过程中发生反应或结构改变,使其可见光谱上某一波段的光吸收率改变,对外表现为通电后材料颜色改变。近年来由于电致变色材料在红光波段以及红外波段的调制作用,大量电致变色器件被应用在智能家居领域,用来调节温度以达到节能减排的作用。其中最为广泛使用的是基于氧化钨的电致变色玻璃。本文以氧化钨为主要研究对象,采取钨酸法以及水热法对其进行研究。主要目的是为了综合常用的WO3颗粒以及W18O4
近年来,随着全民健康意识不断提高,消费者对食用含糖量高的糖果有一定的顾虑,这导致传统糖果的市场需求萎缩,糖果行业利润减小、生存空间被压缩等一系列问题。因此,研发新型、高端化的糖果品类显得十分迫切,本论文针对上述市场需求变化,开展了含膳食纤维和益生菌的新型糖果的研究和开发,研究内容和结果如下:(1)软糖口感影响因子的探究:研究了添加不同用量的膳食纤维(抗性糊精)及明胶对砂糖和葡萄糖浆组分构成的软糖的
为提高施工效率,践行绿色施工理念,在广州市某装配式地铁车站工程中,临时支护结构中的地下连续墙-腰梁-支撑连接节点将作为车站结构的永久墙梁节点,因此该节点连接的可靠性影响着车站结构的整体安全。该连接节点分别采用了钢筋接驳器连接方法以及预埋钢板连接方法,然而,目前关于该类连接节点力学性能的研究仍较少,且采用不同连接方式的节点力学性能存在较大差异,因此该节点的力学性能仍有待进一步研究。本文基于该工程项目
胶体量子点(Colloidal quantum dots,QDs)由于其高色纯度、发射波长可调、高光致发光量子产率(Photoluminescence quantum yield,PLQY)和优异的内在稳定性等优点,已经引起了平板显示领域的广泛关注。近年来,基于量子点的电致发光器件在效率和寿命方面虽然取得了一定的进展,但是目前量子点发光二极管(Quantum dot light-emitting