论文部分内容阅读
本文以航空航天飞行器(如导弹、运载火箭、空间站等)为研究对象,结合飞行仿真技术、分布计算技术和可视化技术,设计开发了一套通用的、适宜飞行器系统细粒度仿真的分布式软件体系——分布式飞行仿真环境(Distributed Flight Simulation Environment,DFSE),并系统地研究了DFSE系统从应用层子系统设计、分布支撑子系统设计、到交互接口设计的整个过程中所涉及的理论方法和技术原理。 根据飞行器系统细粒度分布仿真的基本要求和特点,DFSE系统采用了当前分布式系统设计中流行的客户/服务器模式、中间件技术和分层设计的思想,并采用面向对象的方法来完成设计与开发。它实现了仿真系统与计算机网络结构的分离、仿真系统内应用子系统和分布式仿真支撑子系统的分离、仿真任务模型与仿真应用平台的分离、以及仿真算法与仿真模型的分离,因此整个仿真系统具有很强的平台独立性、可重用性、可靠性、可移植性以及可扩展性。论文的主要贡献归纳如下: ①对参与设计完成的多个工程应用项目及其研究对象模型的特点进行了深入细致的分析,并在对它们所涉及的分布与飞行仿真技术进行理论深化总结的基础上,阐述了利用共享内存机制来实现仿真节点间数据交互的分布式飞行仿真通用平台的总体解决方案。 ②提出并建立了飞行仿真应用系统的分布式体系结构和软件环境——分布式飞行仿真环境。结合当前仿真领域的先进技术和理论进行了深入系统的研究,通过对飞行仿真的系统需求、任务特点以及技术要求等的仔细分析,考虑系统的通用性和可重用性,详细设计了分布式飞行仿真环境的层次化结构框架体系。 ③进行了DFSE系统分布式支撑核心层的理论方法研究和软件设计开发。通过网络通信中间件的设计,实现了分布式飞行仿真系统跨多种网络平台工作;通过对逻辑共享内存技术的基本思想、构造方法、工作原理以及分类方法等技术理论的深入研究,实现了仿真系统节点间模型数据的透明共享;通过采用事件与时间双重驱动的调度管理机制,实现了对分布式仿真系统运行的有效控制;设计并实现了DFSE系统的多种服务。 ④完成了DFSE系统仿真应用层的设计与开发。系统研究了飞行仿真任务的可分布性、分解原则、任务分配、参数分布以及仿真建模等相关技术理论;设计并实现了DFSE系统应用层的层次化、模块化软件结构体系。 ⑤详细分析了影响分布式飞行仿真系统性能的各种因素,提出了相应的性能改进方法和具体措施,并给出了综合评价系统性能的具体方法和多种性能指标。 ⑥通过对一个典型的工程仿真任务进行分布仿真实验,检验并验证了本文所研制开发的DFSE系统及其技术方法的正确性,实验表明DFSE系统软件操作快捷方便、性能稳定高效、功能强大实用。西北工业大学博士学位论文 作为仿真技术与网络技术相结合的产物,分布式仿真技术己经成为目前实现大型复杂系统仿真的主要技术途径之一。本文研制的DFSE系统是根据飞行器系统细粒度仿真的具体需要来设计完成的一套比较完整的分布式飞行仿真通用平台,它在飞行器系统论证、设计与仿真实验等方面以及相关领域中都有着广阔的应用前景。