论文部分内容阅读
近年来,复杂网络研究正渗透到工程学科、数理学科以及生命科学等众多不同的领域,受到了越来越多的科研工作者的广泛关注。网络鲁棒性(Network robustness)是复杂网络的一个重要属性,也是目前研究的一个重要热点。随着实际网络对其网络鲁棒性的需求越来越高,如何有效地提高实际网络的鲁棒性逐渐成为一个亟待解决的问题。本论文首先对网络鲁棒性优化方法进行了研究,然后对文献[1]提出的网络鲁棒性评价标准进行了理论分析,最后对基于动态攻击/修复模型的网络鲁棒性演变进行了分析。主要工作总结如下:(1)将粒子群算法(Particle Swarm Optimization,PSO)应用到网络鲁棒性优化问题上,提出了基于粒子群算法的无标度网络鲁棒性优化方法,PSO_RSF(Particle Swarm Optimization for enhancing the Robustness of Scale-free networks against malicious attacks)。设计了全新的编码方式和种群更新算子,结合网络优化问题,创新性地提出了邻域自生种群算子,提高了PSO_RSF的全局搜索能力和局部搜索能力。实验结果表明,PSO_RSF能够有效解决“度分布不变”的网络鲁棒性优化问题;相比于初始网络,其网络鲁棒性有了明显的提升,并且优化后的网络结构呈现明显的“洋葱”状结构特征。(2)通过对现实需求的分析,本文提出了“度分布可变”的网络鲁棒性优化问题。针对该优化问题,本文提出了基于密母算法(Memetic Algorithms,MAs)的网络鲁棒性优化算法,MA_ROP(Memetic Algorithm for Robustness Optimization Problem)。设计了有效的交叉、变异等操作算子实现种群的全局搜索。同时,针对每一代中的若干最优个体,设计了启发式爬山算法实现局部搜索。实验结果表明,MA_ROP是一种有效且稳定的算法,并且通过对优化后网络的结构进行研究,得出猜想:规则网络的网络鲁棒性最高。(3)文献[1]提出了一种目前受到最广泛关注的网络鲁棒性评价标准R。根据已有的复杂网络研究理论,本文结合了概率统计学的方法,在网络受到恶意攻击后,对网络结构的变化进行了理论推导,代替了现有评价标准R计算过程中的模拟统计步骤,提出了一种网络鲁棒性评价标准R的理论估计方法。通过在规则网络、小世界网络、随机网络和无标度网络上的仿真测试结果表明,本文提出的理论估计方法可以有效地估计优化后网络的鲁棒性,并且从理论层面上证明了上一项工作的猜想是正确的。(4)现实中的网络存在一种更普遍的现象——在一段时期内,网络的攻击者持续破坏网络,而维护者尽最大努力对网络进行修复。针对上述的动态问题,本文研究了基于动态攻击/修复的迭代模型下的网络鲁棒性演变过程。经过大量实验结果分析得出,连接网络中点介数最小的节点的修复策略能够有效地维护网络的连通性,并且提升网络鲁棒性R,但是却不能提升网络抵抗恶意边攻击的能力。值得一提的是,在两个实际网络上,这种修复策略能够同时提升针对点攻击与针对边攻击的网络鲁棒性。