论文部分内容阅读
以Ni基单晶高温合金为代表的高温材料因其优异的高温力学和抗氧化性能成为航空航天领域不可替代的关键材料。研究高温合金苛刻使役条件下的微观组织演变机理,建立显微结构与宏观性能间的跨尺度关联性,将为合金成分和热机械处理工艺优化提供实验和理论支撑。目前国际上在在透射电子显微镜(Transmission Electronic Microscope,TEM)中开展600℃以上的高温合金力学变形与氧化机理分析的实验研究多采用非原位的方法进行。但在TEM中施加高温和应力条件,同时在纳米甚至原子点阵分辨率下,实时观察材料的显微结构演化过程,进而准确揭示材料的高温塑性变形机理,仍是一项国际性方法学难题,国内外尚无此类商业化科学仪器。在国家重大科研仪器设备研制专项的资助下,本课题组研制出基于TEM的原子点阵分辨原位高温力学实验系统,模拟航空发动机涡轮叶片1150℃和137MPa的使役条件,为在原子尺度研究材料的高温塑性变形机制提供了全新的实验方法。将该原位实验系统搭载于环境球差电子显微镜(Environment Transmission Electronic Microscope,ETEM)可用于在原子尺度研究使役条件下的氧化机理。本论文主要研制TEM原子尺度高温力学样品杆机械平台系统,并利用上述系统原位研究了高温合金材料的高温氧化机制,主要研究内容及结论如下:(1)研制出与TEM腔室尺寸高度适配,与TEM匹配后具有超高真空度的样品杆主体机械结构。本文对样品杆主体机械结构进行关联尺寸设计,将其最终设计为四段式中空结构。根据不同部分的使用工况需求,采用高强度钛合金材质加工样品杆前端,采用轻质铝合金材料加工其余三段。并对四段结构进行优化和安全校核,在满足结构及功能性使用的前提下,扩大双倾零部件和电极零部件的空间。根据样品杆各段的结构尺寸及工作情况,优化各段之间密封连接的方式和材料,对密封结构尺寸进行设计与验证,以得出最优的密封结构及尺寸。自主搭建了样品杆密封检测系统,实现快速方便检测样品杆漏孔位置,最小检测漏率为0.01×10-12Pa·m3/s,为样品杆自密封及样品与TEM的高真空密封提供了有效预检测工具。经检测,样品杆外形主体与TEM腔室尺寸和真空精确匹配,满足TEM优于1×10-5Pa的极限真空需求。(2)研制出适配样品杆机械结构主体前端与极靴小空间尺寸,并能承载一体化载台的双轴倾转机构。该倾转机构以倾转台为从动执行构件,连杆为中间传动构件,采用具有高精密、高真空、无磁和小体积等特性的压电陶瓷电机连接驱动轴作为原动件,采用光栅位移传感器作为高精度位移反馈装置。在工作过程中,原动件的前后往复运动转化为倾转台绕旋转中心的β轴转动。设计了与压电陶瓷电机驱动器适配的软件系统,实现倾转的自动控制。该倾转机构可在5.4 mm TEM极靴内实现-20°~27°的β轴倾转,配合透射电镜测角台实现的±20°的α轴倾转,可容易的实现高温应力下材料显微结构的原子尺度观察和分析。设计了与扫描电子显微镜(Scanning Electron Microscope,SEM)适配的外接真空腔体,在SEM中对β轴倾转角度进行了高精度循环标定,建立了压电陶瓷电机前进与后退位移与倾转角度的关系曲线,有效消除了加工装配误差对倾转精度的影响,实现全循环(-20°~27°)累积误差为0.01°,倾转精度优于0.01°。(3)设计出适配倾转机构,并能够承载加热器件、微型驱动器与引线的一体化载台,其内部空间尺寸小于3 mm×9 mm×0.6 mm。根据对载台进行的受力分析,确定样品制备方式、样品支撑结构上缓冲缝的尺寸和载台与倾转台装配预紧力,有效避免样品装配过程中的断裂行为,成功保障了原位高温力学实验的顺利进行。设计了可适配于小空间一体化载台用印刷电路板(Printed Circuit Board,PCB)和柔性电路板(Flexible Printed Circuit,FPC)组合的电学连接装置,该方式解决了倾转过程中倾转机构与引线互相干扰的技术难点,保证倾转的正常工作与引线的可靠性,解决了小尺度空间内9-16根多信号的引入和输出问题。一体化载台与引线装置具有通用性,可承载单一热、力、电外场,以及热、力和电耦合外场。(4)结合MEMS加热芯片与微型驱动装置完成样品杆整体系统的装配,首次搭建了最高可在1150℃下进行的原子尺度原位高温拉伸实验的平台,并进行了为期2年的可靠运行,验证了本文设计的机械结构及电学传输系统的可靠性。(5)在ETEM中进行了高温合金原位氧化腐蚀实验,揭示了高温合金的初始氧化规律。本实验选择两种条件,一种是800℃恒温条件下,氧气压力由10-7mbar逐渐增加到0.5 mbar的氧化条件;一种是温度由室温逐步升至900℃,并维持0.5mbar的恒定氧气压力的氧化条件。实验结果表明:在0.5 mbar的氧气压力下,γ/γ’界面交结处于450℃开始向外氧化,随着温度的升高,沿γ/γ’界面形成氧化物网络。Ni、Co和Re从界面交叉结处首先被氧化,其次是γ/γ′界面,最后为γ和γ’相,γ’相和γ相中的其他合金元素(Ni,Ta和Nb)也因界面/表面氧化作用而消耗。在900℃剧烈氧化后,Al主要分布在γ’中,而Cr和W分布在γ相中。由Al和Cr形成的具有稳定性和保护性的Al2O3和Cr2O3氧化层较薄,不能完全保护其他合金元素免受氧化,合金元素可以向外扩散到氧化反应界面。合金原子的迁移可在γ和γ’相内部形成空位和孔洞,并为氧分子向内扩散到γ和γ’相中创造空间和通道。