基因表达调控模型的Hopf分支分析

来源 :黑龙江大学 | 被引量 : 0次 | 上传用户:yinxuchao1123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文针对带时滞的基因表达调控模型,给出了相应的Hopf支的存在性,以及关于分支方向、分支周期解稳定性的判定方法,并通过数值算例验证了本文理论分析结果的正确性.  第一,针对带有两个时滞的基因调控网络模型,运用魏俊杰和阮士贵总结出的理论方法来判断系统在正平衡点处的稳定性和Hopf分支(霍普夫分支)的存在性.研究发现,对于某些参数值,系统会产生Hopf分支.研究结果表明,时滞会引起系统的振动.  第二,运用Hassard等人所建立的规范型方法和中心流形理论得到关于分支方向,分支周期解稳定性的判定方法.
其他文献
学位
Orlicz空间根据不同理论和应用的需要,有不同形式的推广。其中,Musielak-Orlicz空间是Orlicz空间的一种常见推广形式。在Orlicz空间几何学的发展过程中,点态性质是对整个空间几
本学位论文中,我们研究了有外力项的双极可压三维Navier-Stokes-Poisson方程.假设外力项在Sobolev空间中足够小,通过解一个非线性耦合的椭圆系统来建立稳态解的存在性,然后,在给
忆阻神经网络是一种具有独特记忆性、电路可实现的神经体系结构,并且是一种新型神经网络模型,因此忆阻递归神经网络的动态分析引起了许多研究者的关注。本文的主要研究内容如下
在工程与科学的多个领域中,有许多实际系统包含有两个明显不同的动态模型:快模型与慢模型.奇异摄动系统是描述和刻画这类系统比较合适的数学模型.另一方面,在许多实际系统中
微分形式是微分流形上定义的反对称协变张量场,在一般相对论,弹性理论,电磁学和微分几何等领域有广泛的应用。因此,在不同的领域中,微分形式是一个很有价值的工具。近几年,关于微分
随着电子计算机的芯片制作工艺逐渐接近难以超越的高度,并且不能有效解决的许多困难的计算问题及NP-完全问题。DNA计算凭借其存储量大、低耗能以及高度并行性等独特优势引起了
本文主要研究了几类半群的模糊理想.首先给出了区间值Q-模糊理想的定义,利用区间值Q-模糊点刻画了区间值Q-模糊理想,并对内禀正则半群和完全正则半群进行了刻画.然后通过引入区