基于深度学习的人群异常行为检测研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:jj13148
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在安防领域,摄像头具有不可替代的作用,但是传统的安防监控系统需要投入大量的人力去对监控内容进行监督与分析进而发现异常情况。而本论文研究的人群异常行为检测算法旨在利用计算机技术代替人力以实现自动地对监控视频里面的人群异常行为进行检测和预警。传统的人群异常行为检测算法大多基于手工特征,由于人群异常行为本身具有非线性和不确定性,这些传统的方法存在鲁棒性差,泛化性弱等缺点。而基于深度学习的网络模型具有强大的拟合非线性函数能力,因此本论文提出用深度学习技术来解决人群异常行为检测问题。在本论文,我们提出了一种基于深度学习技术的检测人群异常行为的检测算法——变分异常行为检测器(Variational Abnormal Behavior Detector,VABD)。我们的工作主要有以下三点贡献:(1)为了既解决视频序列的特征难以提取的问题,又同时考虑某时刻视频帧的上下文内容对异常行为判定的影响,该论文设计了一种针对短视频序列的条件变分自编码器网络结构用以提取输入数据的特征。(2)为了使网络生成的视频帧和输入的视频帧具有更好的运动一致性,该论文提出了一种基于改进光流网络的运动损失函数,该损失函数充分考虑了不同尺度的特征图对生成结果的影响,实验结果证明它能有效提高算法的检测准确率。(3)为了更进一步提高检测模型的性能,该论文还将生成对抗网络的思想运用在VABD算法框架中,同时为了消除视频帧中的背景等因素对分类器的干扰,该论文还提出了一种基于特征图层的注意力机制算法模块。VABD算法在UCSD[23]、CUHK Avenue[24]、IITB-Corridor[25]和Shanghai Tec-h[26]等国际公开的人群异常行为检测相关的数据集的实验结果表明,它能够有效检测视频序列里面的包含异常行为的视频帧,同时它与该领域最先进的算法相比在检测准确率上具有一定的竞争力。
其他文献
电磁逆散射问题研究的是根据测量到的散射场重构成像空间内介质目标的几何信息和电性能参数的空间分布。由于其固有的非线性和病态性,且随着对比度的升高和信噪比的降低其非线性和病态性显著增强,导致了求解电磁逆散射问题成为了挑战。传统优化方法可以很容易将逆散射领域知识纳入其中,并通过最小化目标函数来解决计算数据与测量数据之间的不匹配问题,进而迭代地获得良好的重构结果。然而,由于非线性迭代本质,该方法存在如何选
学位
腔光力学的发展伴随着物理学和信息学的进步,作为量子力学重要组成部分的腔光力学是研究光力相互作用的有效平台,腔光力学在基础物理研究、量子信息学等领域都有着广泛的应用前景,然而以上的应用都有着一个重要的前提是需要机械振子处于量子基态。随着材料科学和纳米技术快速发展,许多具有高品质因子的腔光力学系统不断被提出,但依然存在着一些限制。例如系统固然存在的内部耗散、耦合环境热库的热噪声以及量子反作用力引起的系
学位
无人机作为中继辅助无线通信已广泛应用于各类覆盖增强场景,由于无线通信自身的广播特性,信息在传播过程中会面临窃听、篡改等威胁。与传统的密码学方案相比,低复杂度的物理层安全(Physical Layer Security,PLS)技术在无线通信领域受到了更为广泛的关注。针对无人机中继网络,现有的物理层安全研究主要是降低外部窃听者的窃听速率。实际上,无人机中继网络通常是异构网络,无人机与原有的用户终端在
学位
滑坡预测与预防是一个世界性的难题,近十几年来,随着人工智能的快速崛起,机器学习已被广泛应用于滑坡易发性预测。但是由于滑坡特征通常不相关或非线性相关,以及传统机器学习模型存在泛化能力弱、特征提取不充分等问题,导致基于机器学习的滑坡易发性预测模型存在一定的局限性。深度学习凭借其学习能力强、覆盖范围广、适应性好等特点已被广泛应用于智慧医疗、智慧城市、智慧交通、网络安全等诸多领域。本文提出了基于长短时记忆
学位
旋转机械是工业设备中的核心组件,而滚动轴承是旋转机械中最为常见的关键运动部件,滚动轴承故障轻则影响正常生产,重则产生重大生产安全事故。因此及时、准确地进行滚动轴承故障诊断具有重要意义。本文以滚动轴承为研究对象,针对基于波形的卷积神经网络(Convolutional neural network,CNN)特征提取效果不佳和训练耗时过长的问题,提出了基于小波核卷积神经网络-极限学习机(Wavelets
学位
单像素成像是一种基于压缩感知理论的计算成像方法,因其具有灵敏度高,信噪比大等优良特性,被广泛应用于荧光显微、光谱成像和生物医学成像等多个领域。将光子计数技术与单像素成像技术结合,能够实现更高灵敏度、低成本的单光子压缩成像。用于单光子压缩成像的传统图像压缩重建算法往往具有极高的计算复杂度,且在微弱光环境下,噪声的存在会带来图像重建质量的大幅度下降,而将深度学习与单光子压缩成像相结合是解决这一问题的有
学位
发生交通事故或车辆行驶途中发生故障时,通常需要在事故车辆后方的一定距离摆放三角警示牌,用于提醒后方车辆小心驾驶,避免后方车辆反应不及时引发二次交通事故。但三角警示牌存在许多不尽人意的地方,比如:晚上可视距离太短、易被大风刮走、摆放过程中有发生二次事故的危险等。设计研制新的警示机器人取代三角警示牌,对于保证车辆交通安全具有重要意义。论文提出了一种解决方案,研发了一种基于物联网的交通警示机器人系统,与
学位
随着电商行业的迅猛发展,电商评论文本数据呈爆炸式增长。电商评论文本是用户用来表达个人对电商商品的情感文本,包含着用户对评论对象的情感信息,具有数量多,文本短小,表达的情感丰富等特点,是电商平台、商家和潜在用户决策的重要依据。因此,如何高效科学地从海量电商评价文本准确挖掘并能反映用户情感倾向的信息,已经成为电商平台、用户和商家科学决策亟待解决的问题。传统基于词典的评论文本情感分析受制于情感词典的质量
学位
科技的日新月异使得人与人之间的交流越来越便利,人们在享受信息交流便捷的同时,信息泄露也日益严重。例如,信息通过网络时被肆意复制、篡改以及恶意传播,这对信息安全构成了严重威胁。作为多媒体信息安全的重要技术手段,数字水印技术在版权保护方面扮演着重要角色。为进一步提高数字水印算法的抗几何攻击能力,本文提出了两种抗几何攻击的水印算法。论文主要研究工作如下:基于混沌序列加密算法、双树复小波变换和离散余弦变换
学位
微电网中可再生能源出力存在着较强的随机性和波动性,伴随着大规模电动汽车(EVs)接入所带来的随机负荷,导致需求侧也出现较大随机性。供需两侧的随机性会对微电网的稳定运行产生影响,制定提高微电网稳定性、降低运行成本的调度策略是非常有必要的。含EV微电网结构复杂,模型难以准确建立,传统优化算法求解时容易陷入局部最优解。本文结合量子计算并行能力对长短期记忆神经网络(LSTM)进行改进,建立量子长短期记忆神
学位