论文部分内容阅读
为观察超快强激光物理、等离子体、激光核聚变、超快化学、超快物理学、超快生物学、超快光谱学和光通讯等领域中的快速流逝现象,需要发展具备“察微捕快”能力的超快诊断技术。条纹相机是同时具备飞秒-皮秒级时间分辨和微米级高空间分辨的唯一线性诊断仪器,可提供空间-强度-时间信息或光谱-强度-时间诊断参数,是实现极端条件下微观和超快过程探测的必要手段;对于基础前沿科学研究和提升创新能力具有重要意义,更是惯性约束聚变等国家战略高技术研究中不可或缺的诊断工具。目前,传统条纹变像管的设计重点主要集中于实现超高时间分辨率和空间分辨率方面,且均为像放大型条纹变像管,该类型条纹相机存在增益较低、狭缝方向边缘空间分辨率低、体积大、重量大等不足之处。本文设计并研制了一种小型化条纹变像管,该条纹变像管具有高亮度增益、大探测面积、大动态范围及高边缘空间分辨率等优点。作为条纹相机的核心部件,条纹变像管的辐射、成像及增益特性决定了条纹相机的探测性能。本文全面分析了条纹变像管时空分辨率及亮度增益的影响因素,在此基础上提出了一种高增益小型化条纹变像管结构,采用球面型光电阴极、球面型狭缝加速栅极、球面荧光屏及多折偏转板,并将阴极最佳成像点偏移中心的方法提高条纹变像管光电阴极边缘处的空间分辨率及亮度增益。首先,球面型光电阴极及球面型荧光屏结构,有助于减小傍轴和远轴物点处电子脉冲的光程差和球差,提高条纹变像管的空间分辨率;采用中心电子束欠聚焦、边缘电子束过聚焦、最佳成像点位置偏移阴极中心的方法进一步提高边缘空间分辨率,增大探测面积。其次,狭缝栅极能够提供加速电场,提高光电阴极发射光电子的能量和动量一致性,减小光电子在条纹变像管中的渡越时间,提高时间分辨率;狭缝栅极提供各向异性电场,能够增大电子束斑的最小直径,从而减弱空间电荷效应,增大条纹变像管的动态范围。相对于栅网式加速电极,狭缝电极能够避免电子与栅网碰撞生成二次电子,有利于降低条纹变像管的背景噪声,且狭缝栅极的电子透过率更高,有助于提高条纹变像管的亮度增益。再者,采用多折偏转板结构以保证光电子在不被偏转板截获的情况下获得较高的偏转灵敏度,从而降低偏转系统功率,提高时间分辨率,同时又能降低条纹相机对扫描电压斜率的要求。最终,理论设计的条纹变像管长度仅为Φ40 mm×140 mm,静态空间分辨率高于25lp/mm,动态空间分辨率高于10 lp/mm,时间分辨率优于54.6 ps,偏转灵敏度为17.6 mm/kV,放大倍率仅为0.76.在确定管型的基础上,系统地研究了条纹变像管的时间特性及像差特性。数值分析球面阴栅电极曲率半径对条纹变像管静态空间分辨率、时间畸变的影响,研究结果表明:平面型条纹变像管(平面光电阴极、平面狭缝加速栅极、平面荧光屏条纹变像管)具有正的时间畸变;随着曲率半径的减小,条纹变像管时间畸变逐渐由正值变为负值,且存在最佳曲率半径,使得条纹变像管的时间畸变最小;在此最佳曲率半径下,空间分辨率最高且狭缝扫描像几乎无畸变;球面型条纹变像管能够极大地提高空间分辨率、改善狭缝扫描像的弯曲程度,提高条纹变像管的探测精度。基于理论设计结果,成功研制出一种高增益的小型化条纹变像管,并设计搭建静态测试平台对其静态性能进行全面的测试与分析。结果显示:光电阴极积分灵敏度为178μA/lm,亮度增益高达14.5,光谱灵敏度及辐射增益分别为41 mA/W@550 nm和20.05 mA/W@550 nm,静态空间分辨率为20 lp/mm,狭缝方向放大倍率为0.76.针对设计的高增益小型化条纹变像管,研制了小型化条纹相机整机系统,设计相应的实验测试平台,并对其静态及动态性能进行测试,结果显示:小型条纹相机的边缘静态空间分辨率为15 lp/mm,动态空间分辨率为10 lp/mm@Tscreen=50 ns,时间分辨率优于54.6 ps@Tscreen=4.3 ns,动态范围为345:[email protected] ps.